[en] Reversed-Phase Liquid Chromatography (RPLC) is a common liquid chromatographic mode used for the control of pharmaceutical compounds during their drug life cycle. Nevertheless, determining the optimal chromatographic conditions that enable this separation is time consuming and requires a lot of lab work. Quantitative Structure Retention Relationship models (QSRR) are helpful for doing this job with minimal time and cost expenditures by predicting retention times of known compounds without performing experiments. In the current work, several QSRR models were built and compared for their adequacy in predicting the retention times. The regression models were based on a combination of linear and non-linear algorithms such as Multiple Linear Regression, Support Vector Regression, Least Absolute Shrinkage and Selection Operator, Random Forest, and Gradient Boosted Regression. Models were built for five pH conditions, i.e., at pH 2.7, 3.5, 6.5, and 8.0. In the end, the model predictions were combined using stacking and the performances of all models were compared. The k-nearest neighbor-based application domain filter was established to assess the reliability of the prediction for further compound prioritization. Altogether, this study can be insightful for analytical chemists working with RPLC to begin with the computational prediction modeling such as QSRR to predict the separation of small molecules.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Kumari, Priyanka ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Van Laethem, Thomas ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Hubert, Philippe ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Fillet, Marianne ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Sacre, Pierre-Yves ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Hubert, Cédric ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Language :
English
Title :
Quantitative Structure Retention-Relationship Modeling: Towards an Innovative General-Purpose Strategy.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
François I. Sandra K. Sandra P. Comprehensive liquid chromatography: Fundamental aspects and practical considerations—A review Anal. Chim. Acta 2009 641 14 31 10.1016/j.aca.2009.03.041
Kaliszan R. Correlation between the retention indices and the connectivity indices of alcohols and methyl esters with complex cyclic structure Chromatographia 1977 10 529 531 10.1007/BF02262911
Kaliszan R. Quantitative structure—Retention relationships (QSRR) in chromatography Encycl. Sep. Sci. 2000 4063 4075
Ciura K. Belka M. Kawczak P. Bączek T. Nowakowska J. The comparative study of micellar TLC and RP-TLC as potential tools for lipophilicity assessment based on QSRR approach J. Pharm. Biomed. Anal. 2018 149 70 79 10.1016/j.jpba.2017.10.034 29101818
Ren Y. Liu H. Yao X. Liu M. An accurate QSRR model for the prediction of the GC×GC–TOFMS retention time of polychlorinated biphenyl (PCB) congeners Anal. Bioanal. Chem. 2007 388 165 172 10.1007/s00216-007-1188-0 17342539
Ukić Š. Novak M. Žuvela P. Avdalović N. Liu Y. Buszewski B. Bolanča T. Development of gradient retention model in ion chromatography. Part I: Conventional QSRR approach Chromatographia 2014 77 985 996 10.1007/s10337-014-2653-5
Bodzioch K. Durand A. Kaliszan R. Bączek T. Vander Heyden Y. Advanced QSRR modeling of peptides behavior in RPLC Talanta 2010 81 1711 1718 10.1016/j.talanta.2010.03.028 20441962
Put R. Vander Heyden Y. Review on modelling aspects in reversed-phase liquid chromatographic quantitative structure–retention relationships Anal. Chim. Acta 2007 602 164 172 10.1016/j.aca.2007.09.014
Goryński K. Bojko B. Nowaczyk A. Buciński A. Pawliszyn J. Kaliszan R. Quantitative structure–retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: Endogenous metabolites and banned compounds Anal. Chim. Acta 2013 797 13 19 10.1016/j.aca.2013.08.025
Sagandykova G. Buszewski B. Perspectives and recent advances in quantitative structure-retention relationships for high performance liquid chromatography. How far are we? TrAC Trends Anal. Chem. 2021 141 116294 10.1016/j.trac.2021.116294
Bouwmeester R. Martens L. Degroeve S. Comprehensive and empirical evaluation of machine learning algorithms for small molecule LC retention time prediction Anal. Chem. 2019 91 3694 3703 10.1021/acs.analchem.8b05820 30702864
Goodarzi M. Jensen R. Vander Heyden Y. QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions J. Chromatogr. B 2012 910 84 94 10.1016/j.jchromb.2012.01.012 22341354
Zuvela P. Liu J.J. Macur K. Baczek T. Molecular descriptor subset selection in theoretical peptide quantitative structure—Retention relationship model development using nature-inspired optimization algorithms Anal. Chem. 2015 87 9876 9883 10.1021/acs.analchem.5b02349 26346190
Žuvela P. Macur K. Liu J.J. Bączek T. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches J. Pharm. Biomed. Anal. 2016 127 94 100 10.1016/j.jpba.2016.01.055
Wen Y. Talebi M. Amos R.I. Szucs R. Dolan J.W. Pohl C.A. Haddad P.R. Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model J. Chromatogr. A 2018 1541 1 11 10.1016/j.chroma.2018.01.053 29454529
Song M. Breneman C.M. Bi J. Sukumar N. Bennett K.P. Cramer S. Tugcu N. Prediction of protein retention times in 92 anion-exchange chromatography systems using support vector regression J. Chem. Inf. Comput. Sci. 2002 42 1347 1357 10.1021/ci025580t
Hancock T. Put R. Coomans D. Vander Heyden Y. Everingham Y. A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies Chemom. Intell. Lab. Syst. 2005 76 185 196 10.1016/j.chemolab.2004.11.001
Xu Z. Chughtai H. Tian L. Liu L. Roy J.F. Bayen S. Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis Talanta 2023 253 123861 10.1016/j.talanta.2022.123861
D’Archivio A.A. Maggi M.A. Ruggieri F. Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: Comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters Anal. Bioanal. Chem. 2015 407 1181 1190 10.1007/s00216-014-8317-3
Ciura K. Kovačević S. Pastewska M. Kapica H. Kornela M. Sawicki W. Prediction of the chromatographic hydrophobicity index with immobilized artificial membrane chromatography using simple molecular descriptors and artificial neural networks J. Chromatogr. A 2021 1660 462666 10.1016/j.chroma.2021.462666
Krmar J. Vukićević M. Kovačević A. Protić A. Zečević M. Otašević B. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure-retention relationships modelling in micellar liquid chromatography J. Chromatogr. A 2020 1623 461146 10.1016/j.chroma.2020.461146
Pastewska M. Bednarczyk-Cwynar B. Kovačević S. Buławska N. Ulenberg S. Georgiev P. Kapica H. Kawczak P. Bączek T. Sawicki W. et al. Multivariate assessment of anticancer oleanane triterpenoids lipophilicity J. Chromatogr. A 2021 1656 462552 10.1016/j.chroma.2021.462552 34571283
Ulenberg S. Ciura K. Georgiev P. Pastewska M. Ślifirski G. Król M. Herold F. Bączek T. Use of biomimetic chromatography and in vitro assay to develop predictive GA-MLR model for use in drug-property prediction among anti-depressant drug candidates Microchem. J. 2022 175 107183 10.1016/j.microc.2022.107183
Kamedulska A. Kubik Ł. Jacyna J. Struck-Lewicka W. Markuszewski M.J. Wiczling P. Toward the General Mechanistic Model of Liquid Chromatographic Retention Anal. Chem. 2022 94 11070 11080 10.1021/acs.analchem.2c02034
Kamedulska A. Kubik Ł. Wiczling P. Statistical analysis of isocratic chromatographic data using Bayesian modeling Anal. Bioanal. Chem. 2022 414 3471 3481 10.1007/s00216-022-03968-x 35347353
Wiczling P. Kamedulska A. Kubik Ł. Application of Bayesian Multilevel Modeling in the Quantitative Structure–Retention Relationship Studies of Heterogeneous Compounds Anal. Chem. 2021 93 6961 6971 10.1021/acs.analchem.0c05227
Ghorbanzadeh M. van Ede K.I. Larsson M. van Duursen M.B. Poellinger L. Lucke-Johansson S. Machala M. Pencikova K. Vondracek J. van den Berg M. et al. In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines Chem. Res. Toxicol. 2014 27 1120 1132 10.1021/tx5001255
Sutton C. Boley M. Ghiringhelli L.M. Rupp M. Vreeken J. Scheffler M. Identifying domains of applicability of machine learning models for materials science Nat. Commun. 2020 11 4428 10.1038/s41467-020-17112-9
Al-Fakih A. Algamal Z. Lee M. Aziz M. A sparse QSRR model for predicting retention indices of essential oils based on robust screening approach SAR QSAR Environ. Res. 2017 28 691 703 10.1080/1062936X.2017.1375010
Fouad M.A. Tolba E.H. Manal A. El Kerdawy A.M. QSRR modeling for the chromatographic retention behavior of some β-lactam antibiotics using forward and firefly variable selection algorithms coupled with multiple linear regression J. Chromatogr. A 2018 1549 51 62 10.1016/j.chroma.2018.03.042
Djoumbou Feunang Y. Eisner R. Knox C. Chepelev L. Hastings J. Owen G. Fahy E. Steinbeck C. Subramanian S. Bolton E. et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy J. Cheminform. 2016 8 61 10.1186/s13321-016-0174-y
Shardlow M. An Analysis of Feature Selection Techniques The University of Manchester Manchester, UK 2016 Volume 1 1 7
Muthukrishnan R. Rohini R. LASSO: A feature selection technique in predictive modeling for machine learning Proceedings of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA) Coimbatore, India 24 October 2016 18 20
Svetnik V. Liaw A. Tong C. Culberson J.C. Sheridan R.P. Feuston B.P. Random Forest: A classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003 43 1947 1958 10.1021/ci034160g
Hepp T. Schmid M. Gefeller O. Waldmann E. Mayr A. Approaches to regularized regression–a comparison between gradient boosting and the lasso Methods Inf. Med. 2016 55 422 430 10.1055/s-0038-1669389 30634196
Kaliszan R. Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography J. Chromatogr. A 1993 656 417 435 10.1016/0021-9673(93)80812-M
rdkit.org The RDKit 2022.03.1 Documentation 2022 Available online: https://www.rdkit.org/docs/ (accessed on 1 January 2023)
Sahigara F. Mansouri K. Ballabio D. Mauri A. Consonni V. Todeschini R. Comparison of different approaches to define the applicability domain of QSAR models Molecules 2012 17 4791 4810 10.3390/molecules17054791 22534664
Sushko I. Novotarskyi S. Körner R. Pandey A.K. Kovalishyn V.V. Prokopenko V.V. Tetko I.V. Applicability domain for in silico models to achieve accuracy of experimental measurements J. Chemom. 2010 24 202 208 10.1002/cem.1296
Van Laethem T. Kumari P. Hubert P. Fillet M. Sacré P.Y. Hubert C. A pharmaceutical-related molecules dataset for reversed-phase chromatography retention time prediction built on combining pH and gradient time conditions Data Brief 2022 42 108017 10.1016/j.dib.2022.108017
Kubik Ł. Wiczling P. Quantitative structure-(chromatographic) retention relationship models for dissociating compounds J. Pharm. Biomed. Anal. 2016 127 176 183 10.1016/j.jpba.2016.02.050
Taraji M. Haddad P.R. Amos R.I. Talebi M. Szucs R. Dolan J.W. Pohl C.A. Rapid method development in hydrophilic inter-action liquid chromatography for pharmaceutical analysis using a combination of quantitative structure–retention relationships and design of experiments Anal. Chem. 2017 89 1870 1878 10.1021/acs.analchem.6b04282
Tyteca E. Talebi M. Amos R. Park S.H. Taraji M. Wen Y. Szucs R. Pohl C.A. Dolan J.W. Haddad P.R. Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: Use of retention factor ratio J. Chromatogr. A 2017 1486 50 58 10.1016/j.chroma.2016.09.062
Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules Sci. Rep. 2017 7 42717 10.1038/srep42717 28256516
Kim S. Thiessen P.A. Bolton E.E. Chen J. Fu G. Gindulyte A. Han L. He J. He S. Shoemaker B.A. et al. PubChem substance and compound databases Nucleic Acids Res. 2016 44 D1202 D1213 10.1093/nar/gkv951
Liu H. Dougherty E.R. Dy J.G. Torkkola K. Tuv E. Peng H. Ding C. Long F. Berens M. Parsons L. et al. Evolving feature selection IEEE Intell. Syst. 2005 20 64 76 10.1109/MIS.2005.105
Charoenkwan P. Chiangjong W. Nantasenamat C. Hasan M.M. Manavalan B. Shoombuatong W. StackIL6: A stacking ensemble model for improving the prediction of IL-6 inducing peptides Brief. Bioinform. 2021 22 bbab172 10.1093/bib/bbab172
Matlock K. de Niz C. Rahman R. Ghosh S. Pal R. Investigation of model stacking for drug sensitivity prediction BMC Bioinform. 2018 19 21 33 10.1186/s12859-018-2060-2 29589559
Ranstam J. Cook J. LASSO regression J. Br. Surg. 2018 105 1348 10.1002/bjs.10895
Awad M. Khanna R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers Springer Nature Berlin/Heidelberg, Germany 2015
Segal M.R. Machine Learning Benchmarks and Random Forest Regression Center for Bioinformatics and Molecular Biostatistics San Francisco, CA, USA 2004
Natekin A. Knoll A. Gradient boosting machines, a tutorial Front. Neurorobot. 2013 7 21 10.3389/fnbot.2013.00021 24409142
Taraji M. Haddad P.R. Amos R.I. Talebi M. Szucs R. Dolan J.W. Pohl C.A. Error measures in quantitative structure-retention relationships studies J. Chromatogr. A 2017 1524 298 302 10.1016/j.chroma.2017.09.050 29037590
Landrum G. Rdkit documentation Release 2013 1 4
Kuhn M. Wing J. Weston S. Williams A. Keefer C. Engelhardt A. Cooper T. Mayer Z. Kenkel B. Team R.C. et al. Package ‘caret’ R J. 2020 223 7
Wickham H. Chang W. Wickham M.H. Package ‘ggplot2’ Create Elegant Data Visualisations Using the Grammar of Graphics: Version 2 R Foundation for Statistical Computing Vienna, Austria 2016 Volume 2 1 189
Milano Chemometrics and QSAR Research Group Applicability Domain Toolbox (for MATLAB) 2013 Available online: https://michem.unimib.it/download/matlab-toolboxes/applicability-domain-toolbox-for-matlab/ (accessed on 10 October 2022)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.