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Abstract: Reversed-Phase Liquid Chromatography (RPLC) is a common liquid chromatographic
mode used for the control of pharmaceutical compounds during their drug life cycle. Nevertheless,
determining the optimal chromatographic conditions that enable this separation is time consuming
and requires a lot of lab work. Quantitative Structure Retention Relationship models (QSRR) are
helpful for doing this job with minimal time and cost expenditures by predicting retention times of
known compounds without performing experiments. In the current work, several QSRR models
were built and compared for their adequacy in predicting the retention times. The regression models
were based on a combination of linear and non-linear algorithms such as Multiple Linear Regression,
Support Vector Regression, Least Absolute Shrinkage and Selection Operator, Random Forest, and
Gradient Boosted Regression. Models were built for five pH conditions, i.e., at pH 2.7, 3.5, 6.5, and
8.0. In the end, the model predictions were combined using stacking and the performances of all
models were compared. The k-nearest neighbor-based application domain filter was established to
assess the reliability of the prediction for further compound prioritization. Altogether, this study can
be insightful for analytical chemists working with RPLC to begin with the computational prediction
modeling such as QSRR to predict the separation of small molecules.

Keywords: QSRR; machine learning; stacking; applicability domain; RPLC

1. Introduction

Liquid chromatography (LC) is widely used in the context of identification and assay of
analytes present in a mixture. Several modes such as normal phase liquid chromatography
(NPLC), reversed-phase liquid chromatography (RPLC), or hydrophilic interaction liquid
chromatography (HILIC) are available. All these modes are based on the same principle,
where analytes are present in a liquid mobile phase and are passed through a column
containing solid stationary phase under high pressure. The retention time (tR) observed is
the time taken by the analyte to travel across the column, and is dependent on the difference
in the interaction of the analyte with mobile and stationary phases at varied conditions.
Several experimental parameters may influence these interactions, leading to a separation
of the compounds. Among these, the composition of the mobile phase (i.e., pH, organic
modifier, gradient elution) and the stationary phases must be selected. Given the multiple
possibilities, finding an optimal condition for such separation is generally performed on
a trial-and-error basis and largely depends on the researcher’s prior knowledge. This, in
turn, becomes time- and resource-consuming and represents a significant bottleneck of
LC analysis in many domains [1]. Quantitative Structure-Retention Relationships (QSRRs)
modeling was proposed as an alternative solution to optimize the method development
phase [2,3].
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QSRR models are computational models that establish a statistically significant rela-
tionship between a chromatographic retention parameter and molecular descriptors, which
are numerical quantities carrying physico-chemical information of the molecules [4]. Such
prediction models could be applied to any type of separation analysis irrespective of the
chromatographic techniques or even the modes of a particular technique. Hence, its appli-
cation range covers many interesting systems such as TLC [4], GC [5], IC [6], RP-LC [7,8],
and HILIC chromatography modes [9].

QSRR model development not only enlarges the range of applications, but also in-
creases the understanding of the separation mechanisms. There are several ways of QSRR
modeling including the models based on mechanistic equations [10] or based on machine
learning methods. The latter are quite popular because of their efficiency and the avail-
ability of multiple algorithms. The support vector (SVR) and Partial Least Square (PLS)
models are the most popular options [1,11–16], but other types of regression algorithms
such as Gradient Boosting Regression (GBR), Random Forest, Neural networks, etc. have
been successfully applied [17–20].

Most of the recent machine learning algorithms can be severely limited in accuracy
and applicability by the size and nature of the dataset, number, type of descriptors, etc.
However, the LC datasets are generally small because of the time and resources needed
to build it. Therefore, most modeling strategies imply a feature selection step to avoid
overfitting and ensure sparsity of the models since sparse models are generally more
robust. Hence, multiple strategies of descriptor selections have been used and shown to
have performing differently on different datasets. A feature selection comparison study
proposed by Goodarzi et al. showed that models built on descriptors selected by ant colony
optimization algorithm coupled with SVR regression could be an excellent alternative for
retention prediction modeling [12]. Zuvela–Petar et al. used a PLS regression model built
on molecular descriptors selected by a genetic algorithm (GA), particle swarm optimization
(PSO), artificial bee colony (ABC), firefly algorithm (FA), and flower pollination algorithm
(FPA) [13], whereas Krmar–Jovana et al. compared a combination of linear (MLR) and
nonlinear models (SVM) based on a preselected feature set [21]. Pastewska–Monika, et al.
and Ulenberg–Szymon, et al. used genetic algorithm coupled with MLR (Multiple Linear
Regression) for [22,23]. At the same time, there are models which are based on Bayesian
approach that involve using prior knowledge, represented as probability distributions,
to make predictions of retention time of a molecule. The prior knowledge is combined
with experimental data to produce a posterior probability distribution, which provides a
prediction of the retention time. The choice of mechanistic descriptors and the form of the
prior distributions can have a significant impact on the accuracy of the predictions made by
the model [24–26]. Since QSRR models are computational models, prediction discrepancies
are frequent because of overfitting which, in turn, questions the reliability of their practical
use on new untested chemical compounds. Therefore, it is a good practice to review the
model’s validity as per Organization for Economic Co-operation and Development [27].
Although few research studies have checked applicability domain [18,28–30], it is still very
rare that all QSRR models are accompanied with such validations.

When looking at the literature, the proper well-structured strategy to get started with
the structure-derived retention modeling, i.e., the choice of descriptor set, and the selection
of a specific regression algorithm are not clearly defined yet. Most studies are based on the
researcher’s previous experience or the most cited methods in the literature pool. Hence,
a comprehensive generalized overview of the practical strategy when there is a limited
dataset, which is the most frequent scenario for such separation studies, would benefit the
field of analytical chemistry. Consequently, we propose a strategy that might be used in a
variety of cases because of its conception (use of linear, nonlinear algorithms, use of diverse
feature selection tools, and applicability domain of the use of selected model). Looking at
the current time where deep learning approaches are dominating the ML space, applying
them on small dataset is not feasible. Hence, this approach is versatile and useful even on
small datasets.
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2. Results and Discussion

In this study a simple, clear, and well-defined strategy (Figure 1) for QSRR modeling is
proposed, which can be referred to use when the new test molecule structures are known.
Seven diverse machine learning algorithms coupled with three methods of feature selections
were evaluated for their retention-time prediction abilities. The regression algorithms and fea-
ture selections were chosen based on the fundamental difference in their working mechanism
so that the strategy could give a holistic view of the performances of a variety of methods
suitable for such predictions. The selected regression algorithms were a combination of linear
and nonlinear methods based on single modeling and ensembles, too. Ensemble models
were a combination of methods that take advantage of bagging or boosting. The molecular
descriptor dataset used for all regression models was varied according to the method of
feature selections applied on the dataset. Since linear regression modeling could not handle
multicollinearity issue hence, they were coupled with feature selection, before proceeding to
regression prediction. These comparative methods provide insights into the applicability of
varied models with feature sets for users as to when there will be insufficient or complete
lack of domain knowledge, or when there will be a need to support expert knowledge to
achieve higher prediction performances with a given set of descriptors.

 

Figure 1. Workflow describing the steps of QSRR Modeling.

Preprocessing and feature selection led us to have three types of datasets at each
pH: [1] data where features were selected using filter method (e.g., CFS); [2] data where
features were selected using wrapper method (e.g., RFE); and [3] data with all features
remaining after preprocessing. All datasets were used for regression modeling, and their
predictive performances were compared in 10-fold cv and on the external test set.

2.1. Diversity of the Dataset

It is expected that the more diverse the dataset, the better the trained models and their
generalization performance on the new test set. The diversity of the dataset was checked
based on molecular weights and their chemical taxonomy. The molecular weight of the
compounds varied from 46 to 456 g/moL. ClassyFire3 [31] was used to obtain a chemical
taxonomy of molecules in the dataset using their smile structure (Supplementary File S3).
The majority of molecules were classified into eight ClassyFire’s groups on the level of
superclass, namely the following: benzenoids (40.0%) organoheterocyclic compounds (29%),
organic acids and derivatives (17%), homogenous non-metal compounds (5%), nucleosides,
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nucleotides and analogues (4%), organic oxygen compounds (2%), phenylpropanoids and
polyketides (2%), and other compounds (1%) such as lipids and lipid molecules.

2.2. Comparison of Feature Selection Methods

Our data were high-dimensional QSRR datasets, i.e., less data points than number of
features. Hence, it was a prerequisite to apply a dimensionality reduction algorithm to make
the models computationally less expensive and to improve their prediction performances.
In this study, there were three feature selection methods used that were coupled with
regression prediction.

(1) Filter methods: In this method, variables were chosen regardless of the model
building; hence, these are robust and effective in terms of overfitting and computation time,
respectively. These methods work by estimating a relevance score based on a user-defined
threshold to select the best-scoring features such as the correlation with the predictive
dependent variable [32]. (2) In wrapper method, which is comparatively computationally
expensive and prone to overfitting, the variable exists as a wrapper around the predictive
model algorithms and uses the same model to select the best features based on some
performance measures for example RMSE in this study [32]. (3) The embedded method is a
mix of both filter and wrapper methods. Here, the feature selection process is embedded
in the learning or the model-building phase and is performed with some penalty on
unfavorable features. In other words, these algorithms have an intrinsic strategy of feature
selection and overfitting prevention [33–35].

In this study, all three categories of feature selection methods were analyzed for their
performances in accordance with their use in regression models. From Tables 1–5, the
algorithm with feature selections embedded (RF and GBR) and wrapper method RFE
performed comparatively better at all pHs. It is also interesting to note that the filter
(CFS) and wrapper (RFE) methods, when coupled with non-linear regression methods,
perform better than when coupled with linear methods. This could be understood in
terms of multicollinearity in the dataset with features. Multicollinearity creates model
instability. Better performance of embedded feature selection method could be justified
by two arguments: Firstly, they consider the interaction between features giving much
closer and detailed information about the data pattern. Secondly, there is no issue of
multicollinearity since they apply penalties on correlated features.

Table 1. Prediction performances of all models at pH 2.7.

Models CV External Test

RMSECV R2 RMSE R2

MLR_CFS 0.17 0.71 0.25 0.50
SVR_CFS 0.15 0.78 0.22 0.64
MLR_CFS 0.14 0.83 0.22 0.70
SVR_RFE 0.13 0.83 0.17 0.80

Lasso 0.13 0.84 0.20 0.70
RF 0.13 0.83 0.19 0.76

GBM 0.13 0.81 0.18 0.72
Stack 0.13 0.82 0.25 0.80
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Table 2. Prediction performances of all models at pH 3.5.

Models CV External Test

RMSECV R2 RMSE R2

MLR_CFS 0.15 0.79 0.34 0.41
SVR_CFS 0.17 0.72 0.25 0.53
MLR_RFE 0.14 0.81 0.30 0.58
SVR_RFE 0.13 0.89 0.21 0.70

Lasso 0.13 0.82 0.22 0.66
RF 0.14 0.81 0.21 0.70

GBM 0.15 0.80 0.24 0.50
Stack 0.12 0.87 0.18 0.77

Table 3. Prediction performances of all models at pH 5.0.

Models CV External Test

RMSECV R2 RMSE R2

MLR_CFS 0.15 0.81 0.41 0.42
SVR_CFS 0.19 0.78 0.26 0.63
MLR_RFE 0.15 0.82 0.26 0.64
SVR_RFE 0.14 0.85 0.19 0.83

Lasso 0.13 0.87 0.23 0.71
RF 0.14 0.87 0.22 0.75

GBM 0.14 0.85 0.23 0.69
Stack 0.12 0.87 0.21 0.75

Table 4. Prediction performances of all models at pH 6.5.

Models CV External Test

RMSECV R2 RMSE R2

MLR_CFS 0.20 0.76 0.31 0.58
SVR_CFS 0.23 0.73 0.35 0.44
MLR_RFE 0.16 0.87 0.29 0.63
SVR_RFE 0.16 0.88 0.19 0.84

Lasso 0.16 0.81 0.28 0.71
RF 0.15 0.87 0.20 0.84

GBM 0.15 0.88 0.15 0.90
Stack 0.13 0.90 0.18 0.85

Table 5. Prediction performances of all models at pH 8.0.

Models CV External Test

RMSECV R2 RMSE R2

MLR_CFS 0.21 0.77 0.26 0.71
SVR_CFS 0.22 0.76 0.29 0.64
MLR_RFE 0.21 0.83 0.22 0.79
SVR_RFE 0.17 0.87 0.15 0.91

Lasso 0.15 0.89 0.30 0.70
RF 0.15 0.86 0.17 0.88

GBM 0.16 0.86 0.15 0.89
Stack 0.14 0.92 0.12 0.93

2.3. Important Features

Every microspecies of molecules exists in dynamic equilibrium during the separation
process, and their retention times varies with changing pH. Therefore, the weighted average
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of their features is expected to give a more informative and descriptive feature set. Good
accurate QSRR models at multiple pHs can give us information about the most relevant
descriptors for the retention times prediction [36]. Better prediction performance of nonlin-
ear models over linear models inferring those nonlinear patterns of molecular descriptors
predicts retention time relatively well. The following steps were followed to make the max-
imum inference about the selected features: All the features selected using the filter method
and wrapper method and the top 20 features used by prediction models (embedded feature
selections) were compared. Mutually inclusive features from all the models were selected as
the most essential and representative features for retention time predictions. These selected
features are listed in Table S4 (Supplementary File S4). LogD, MolLogP and PEOE_VSA6
are the most selected features by all the models at every pH. Apart from these, there were
other features such as NHOHCount and VSA_Estate that were also among the selected
features. The study has been performed in reverse-phase liquid chromatography, where
the difference in the lipophilicity of the compound, is the main factor affecting the retention
of the molecules. Hence, the selection of descriptors related to lipophilicity exemplifies
better feature selections. LogD and MolLogP are the pH-dependent distribution coefficients
and octanol-water partition coefficients, respectively, for every microspecies of a molecule,
i.e., both neutral and ionized. PEOE_VSA, which represents the partial atomic charge of
the molecule, ranges from 1 to 14 based on the partial charge distribution. In PEOE_VSA
parameter, PEOE denotes Partial Equalization of Orbital Electronegativities, which is a
charge calculation method, and VSA signifies Van der Waals Surface Area. It is interesting
to note that out of 14, it is PEOE_VSA6 which denotes Van der Waals Surface Area having
the atomic partial charge in the range of −0.10 to −0.05, which was selected maximally [37].
“NHOHCount” gives the molecule’s NHs and Ohs count, whereas “polarizability” is a
measure of electric dipole or electronic charge dispersion in response to an external electric
field. These descriptors can, in principle, distinguish between slight differences in a local
region of two globally similar molecules. The use of such information, as given by logD,
LogP and the PEOE_VSA descriptors, seems necessary to construct a robust and accurate
in silico model from structural information of test compounds. These descriptors are a
parameterized representation of the hydrophobicity displayed in all modes of RPLC for the
separation of varied kinds of analytes.

2.4. Predictive Performance of the Different Algorithms on All Datasets

Performance differences between the different QSRR models were evaluated in terms
of RMSE and R2 on all five datasets. For each dataset, all compounds are used in a nested
10 CV approach to assess the generalization performance. To validate the model, a separate
test set of 10 molecules was used. Every model performance on test set was compared at
each condition and reported. Grid search method was used in tuning parameters. Tuned
parameters for each model at every pH is listed in Supplementary File S10. The detailed
CV results for RMSE and R2 for each dataset are shown in Tables 1–5, respectively. Mean
rank over all datasets (all pH) when the performance was sorted on RMSE, was calculated
to find the best suitable model for retention time prediction. From the Figure 2, it is evident
that stacking is the best algorithm and hence, can be used for retention time prediction
for small molecules in RPLC setup. Linear models such as MLR (CFS, RFE) and LASSO
are not performing very well. Figure 2 shows how stacking reduces the RMSE of models
over other single models. Note that the ensemble methods like RF and GBM performed
comparatively better than single models at lower pH, i.e., at pH 2.7 and 3.5, emphasizing
the fact that ensembling is a better way to fit nonlinear relations in a model. The SVR
(nonlinear RBF kernel + RFE) model followed after them, performing well for datasets at
extreme pH conditions, i.e., at 2.7, 6.5, and 8.0. Stacking performance was comparatively
similar to GBM, RF, and SVR_RFE at pH 2.7. Apart from one pH, this algorithm performed
consistently well throughout the given pH range. The minimum error of prediction was
as less as 0.02. The highest prediction error was observed at pH 2.7. These observations
support the fact that except on a few circumstances, out of all algorithms, stacking is most
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likely to show the better generalization performance. More explanatory discussion about
the performance of feature selection coupled with regression models can be provided using
observed versus prediction score plots. The closer the fitted line is to the identity line, the
better the model. The predicted values and their corresponding experimental retention
times for stacking model at all pHs are plotted in Figure 3, and the rest of the models
are plotted in Supplementary File S5–S9. Residuals, i.e., the difference between predicted
and experimental values for the stacking model, were plotted at all pHs to obtain a closer
look at the predictions (Figure 4). The residuals distributions for all dataset validated the
superiority of stacking model. Note that, to the authors knowledge, the stacking algorithm
has never been applied before for retention time prediction in RPLC.
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Figure 2. (a): Rank of every algorithm based on RMSE along the dataset. (b): The mean rank over all
datasets when the performance is sorted on RMSE.
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Figure 3. Predicted vs. experimental retention times (in min.) for stacking model at all pHs (Blue
line—Fit line, Black dashed line—identity line).

2.5. Applicability Domain Check

It is impossible to anticipate the whole universe of compounds when building a single
QSRR model. Hence, there is a need to define the model limitations with respect to its
structural domain and response space, which can further be used to evaluate the ambiguity
in the prediction of a given molecule relying on the structural similarity of molecules used
in the development of the QSRR model. This structural boundary to determine the subspace
of chemical structures for reliable property prediction is defined as the applicability domain,
which is also the third OECD principle [38]. The query chemicals falling under the defined
boundaries of the model are considered within the applicability domain; hence, their
predictions will be considered reliable. The predictions of the other molecules which are
outside the applicability domain will not be trusted. In cases like this study, where several
QSRR models have been built for retention prediction of small molecules, the knowledge
of applicability domain helps to compare the reliability of prediction by each QSRR model.
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Figure 4. Predicted vs. experimental retention times (in min.) for stacking model at all pHs (after
removing Miconazole). (Blue line—Fit, Black dashed line—identity line).

A KNN-fix method (section—applicability domain in material and methods) at a
distance of 95% confidence interval was used to define the applicability domain of the
QSRR model concerning its structural domain and response space. It is observed that
stacking outperformed the rest of the single models; hence, the study of this section was
focused on the stacking models only. The error of predictions of all QSRR models for each
compound were compared with the distances among features (all features) calculated using
the KNN-fix method [39]. It can be seen in Table 6, Figure 3, and Supplementary File S11
that the error of prediction at all pHs was bad for the compound miconazole, which turned
out to be out of the applicability domain since its calculated distance was higher than the
threshold at every pH.

The prediction performance and hence, the regression line and residual plot, was
better when plotted (Figures 4 and 5) after removing miconazole from the external test set.
Hence, it can be inferred that the retention time prediction of miconazole or any new test
compound similar to this cannot be considered reliable. The calculated threshold could
serve as a very good measure for filtering new test compounds for retention prediction.
Detailed analysis of such behavior of miconazole was beyond the scope of this study.
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Table 6. Applicability domain calculated for each compound in test set. (Errors in columns 2,3,4,5,6
are the errors of prediction from all the models specific for compounds. Distances in columns 5,6,7,8,9
are their distances calculated using KNN fixed methods). Errors are based on back-transformed
retention times (min unit).

Compound
Error

pH 2.7
Error

pH 3.5
Error

pH 5.0
Error

pH 6.5
Error

pH 8.0
Distance

pH 2.7
Distance

pH 3.5
Distance

pH 5.0
Distance

pH 6.5
Distance

pH 8.0
Applicability

23dideoxyadenosine 0.49 1.67 0.47 1.49 2.82 13.86 13.57 12.87 13.15 13.35 In
mefenamic acid 8.07 0.00 4.30 5.44 1.60 11.32 11.34 11.43 11.37 11.40 In

cytosine 5.11 1.37 2.62 1.81 1.65 9.51 9.16 8.81 9.06 9.26 In
gallic acid 2.76 2.09 0.11 0.21 0.20 8.39 8.45 8.44 8.48 8.53 In

4aminosalicylic
acid 0.19 3.37 0.80 0.05 0.37 5.84 6.20 6.21 6.14 6.21 In

2deoxyguanosine 1.42 2.08 1.91 2.55 0.47 12.77 12.39 12.37 12.64 12.36 In
miconazole 3.82 9.03 34.90 23.87 6.21 21.72 21.81 21.89 21.47 21.52 Out

chlordiazepoxide 0.32 4.50 3.49 0.00 0.84 11.50 11.54 11.70 11.52 11.86 In
4nitrophenol 1.96 4.98 4.98 4.41 1.96 7.66 7.73 7.77 8.05 9.12 In

coumarin 3.26 1.95 0.31 0.94 1.65 7.44 7.49 8.03 8.27 8.50 In
Threshold 15.87 15.86 15.88 15.64 14.99

μ

Figure 5. Residual plots (in min.) for stacking model at all pH (without miconazole).

3. Materials and Methods

3.1. Dataset Collection

The dataset used in this study was built in-house [40] and consists of retention time
observed for 98 small pharmaceutical compounds reported in minutes. The list of small
molecules in the dataset came from [41–43]. The compounds were tested for their drug-
likeness (following Lipinski’s rule) using SwissADME tool [44], and more than 90% of the
compounds followed all rules of Lipinski’s representing the usefulness of the trained model
for other drug-like molecules too. Moreover, the compound selection was performed as
such that apart from RPLC they could be relevant for other chromatographic modes such
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as ionic (IC) and hydrophilic interaction (HILIC). Hence, the strategies developed for one
mode can be expandable on another. The data were acquired in RPLC mode using a Waters
XSelect HSS T3 (100 × 2.1 mm, 3.5 µm) column at 25 ◦C, with flow rate 0.3 mL/min at five
different pH conditions—2.7, 3.5, 5.0, 6.5, and 8.0—with a gradient elution of 0–95% of
methanol in 20 min time.

3.2. Molecular Descriptors and Their Calculation

Molecular descriptors play an important role in achieving accurate retention prediction.
They form the firm basis for any QSRR model. For regression models, a set of 1D and 2D
descriptors covering physical, chemical, and structural properties were calculated for every
molecule in the dataset using their SMILE structure taken from PubChem database [45].
The molecular descriptors in this article are calculated taking the ionization state of the
compound at the pH of interest into account with the weighted average, where the weights
are the percentage of distribution of the microspecies at the considered pH. (described with
example in Supplementary File S1). The ionization states were obtained from Chemaxon
software (accessed on 4 January)) and the descriptor values were calculated using RdKit
library version 2021.09.5. An additional descriptor, logD, was added in the final molecular
descriptor set. The value of this descriptor was calculated by Chemaxon at the value of the
pH of interest. Thus, a total of 239 molecular descriptors were computed for each molecule
at each pH condition (names of descriptors are mentioned in Supplementary File S6).

3.3. Data Cleaning and Preprocessing

There are five datasets (varying with pH-2.7, 3.5, 5.0, 6.5, 8.0) used in this study. Each
dataset consists of 97 rows and 239 columns initially. All compounds with retention times
below 2 min at all pH were removed. Zero-variance descriptors were also removed. Filtered
feature names are mentioned in Table S2. Our dataset had features with values of different
ranges; hence, the final dataset was standardized before QSRR modeling. The first step
involved mean centering, and in the second step data values were divided to standard
deviation making the variance of variable to 1. The final dataset had 67 compounds for
modeling and 10 compounds in external test set at each pH.

3.4. QSRR Modeling with Feature Selection

The choice of regression techniques for correlating structural descriptors with the
analyte’s experimental retention time plays crucial role in constructing best and efficient
QSRR models. There are no best algorithms defined for such retention predictions. One
type of algorithm can work better for one problem, but fail to achieve the same level of
accuracy for another. The performance of such regression models depends also on quality
of the dataset. Out of many available descriptors, there is a high chance of some redundant,
noisy, or irrelevant features in the starting dataset that can create problems in retention
prediction: the curse of dimensionality, overfitting problems, high training time for model
construction, and poor generalization ability of built models are among a few of these
problems [46]. Therefore, a more systematic strategy adapted for QSRR methods is required
to determine the possible preliminary, intermediate, and final steps to achieve the absolute
accuracy of the best selected QSRR models.

Consequently, a well-organized strategy is proposed here (Figure 1).
Five machine learning algorithms were used—Multiple Linear regression (MLR), Least

Absolute Shrinkage and Selection Operator (LASSO), Support Vector Regression (SVR),
Random Forest (RF) and Gradient Boosting Regression (GBR). These algorithms were
coupled with three feature selection methods: (i) filter (correlation-based filter), (ii) wrapper
(Recursive Feature Selection methods, RFE), and (iii) embedded method were compared
for their prediction abilities using small molecule datasets.
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3.5. Combining Multiple Predictions Using Stacking

At the end of the analysis multiple predictions from individual models (Section 3.4)
were combined using stacking algorithm. Model stacking is an ensemble method that
uses a meta learner to club the predictions from single learners and then combines them
to obtain the final predictions [47,48]. Two-level model architecture was used to build a
stacking regressor with a hypothesis that, combining individual model’s predictions, would
increase the prediction performance. At level 1, all base learners are built and optimized to
obtain the best individual predictions. At level 2, the meta learner combines the predictions
coming from level-1 models. Predictions made on external test data at level 1 were used to
train the meta model. The simplest and most widely used algorithm (MLR) was chosen as
meta regressor.

All models were built using 10-Fold cross validation, and RMSE was used as per-
formance metric. The model with the top ranking (based on ranking over all datasets
with sorted RMSE) was selected as the best algorithm for the retention prediction of small
molecules in RPLC.

Algorithms

As shown in Figure 6, five algorithms were used at level 1. LASSO regression is a
type of linear regression that uses shrinkage by applying a penalty equal to the absolute
value of the magnitude of coefficients (L1 regularization) [49]. The LASSO procedure
encourages simple, sparse models (i.e., models with fewer parameters). This particular
type of regression is well-suited for models showing high levels of multicollinearity. SVR
with radial basis function kernel (RBF) was used to check the nonlinear dependencies. SVR
provides the flexibility to define how much error is acceptable in the model and will find an
appropriate line (or hyperplane in higher dimensions) to fit the data. The objective function
of SVR is to minimize the coefficients, more specifically, the L2-norm of the coefficient
vector [50]. The error term is handled in the constraints, where one set the absolute error
less than or equal to a specified margin, called the maximum error, Є (epsilon).є

 

Figure 6. Architecture of Stacking used in this study.

RF and GBR both are ensemble learning methods and predict by combining the outputs
from individual trees (tree-based regressions) [51,52]. They differ in the way the trees are
built, that is, the order and the way the results are combined. The main objective of RF,
which represents bagging, is to create several subsets of data from a training sample chosen
randomly with replacement. Each collection of subset data is used to train their individual
trees, resulting in an ensemble of different models. The average of all the predictions from
different trees are used for predictions. In contrast to random forest regression, in GBR,
the learners are learned sequentially with early learners, fitting simple models to the data
and then analyzing data for errors. Consecutive trees (random sample) are fit at every step
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with the goal to improve the performance from the prior tree by applying different weights.
Hence, in turn, this process converts weak learners into a better performing model.

3.6. Hyperparameter Optimization

To customize and obtain the most out of QSRR models, hyperparameters were config-
ured using grid search that allowed models to be customized for specific task on all the
datasets. Optimization was performed using 10-Fold cross validation, and RMSE was used
as performance metric. Grid Search works by defining a search space or hyperparameter
values in the form of a grid, and evaluates each and every position in that grid. The
hyperparameters set with least RMSE were selected to build the prediction models. Grid
search built in caret package itself was used for optimized parameter search.

3.7. Applicability Domain

The K-Nearest Neighbors (KNN) method has been used to calculate the AD of models.
By this method, we calculate the distance of query compounds from a defined point within
the descriptor space of the training data [38]. In this method, the average Euclidean
distances of training molecules are calculated from their k-nearest training neighbors.
An average distance value corresponding to a user-defined percentile is considered as a
threshold. Those test compounds that have an average distance from their k-closest training
neighbors greater than this threshold are reported to be out of the scope of the model’s
applicability and vice versa. In the present study, a k = 5 number of nearest neighbors and
a 95th percentile were selected to compute the AD.

3.8. Model Validation

Model validation step accounts for the fourth principle of OECD, and ensures the
predictability and reliability of the QSRR model to evaluate the credibility of the model’s
predictions on any new set of data. In the current study, the predictive abilities of QSRR
regression models were assessed using 10-fold cross validation and external validation test
data. In 10-fold cross validation, the compounds in the dataset were randomly divided into
10 partitions of equal size. Nine parts were used for training, while the last tenth was used
as a test set. The process was repeated ten times in such a way that each sample was used
exactly once as the test data in each cycle. There are many performance comparison metrices
available in the literature to compare the generalization performance of fitted regression
models, for example, (mean absolute error (mae), percentage mean absolute error (%mae),
Root Mean Squared Error (rmse), percentage root mean square error (%rmse), and R2 for
evaluating the predictive ability of quantitative structure-retention relationships (QSRR)
models [53]; however, in the current study, Root Mean Squared Error (RMSE) and R2 are used
for the same, the reason being that these two are considered an excellent general-purpose
error metric for numerical predictions in most of the QSRR studies reported in the literature.

3.9. Tools and Software Used

RDKit library in Python version 5 September 2021 [54] and Chemicalize were used for
calculation of molecular descriptor set. The statistical evaluation of the data, that is, prepro-
cessing, feature selection, and regression prediction was performed using Caret package in R
version 3.6 [55]. GGplot2 available in R was used for plotting observed versus prediction
plots, and MS excel was used for plotting bar plots [56]. Applicability Domain toolbox,
which is built in Matlab (R2019b), was used for the applicability domain calculation for
prediction models [57]. Implementations and code used in this study can be accessed at:
https://github.com/pkc533/QSRR_SMall-molecules, accessed on 1 January 2023.

4. Conclusions

Chromatographic separation of small molecules is a complex process and the develop-
ment of new separation methods may be a long and costly process. QSRR proved to be
an alternative solution enabling the selection of pre-optimal conditions based on in silico

https://github.com/pkc533/QSRR_SMall-molecules
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computations. However, such computational modeling approaches become tricky with
an increasing number of chromatographic parameters. It is very challenging to use one
type of algorithm over others since non-linear relationships between retention properties
and the molecular descriptors may be present. The current study attempts to simplify the
prediction modeling steps by taking a holistic approach that could be applied to any QSRR
modeling for similar chemical compounds.

Since structures of compounds play a vital role in deciding separation patterns, the
type of molecular descriptors and the way they have been calculated is crucial. The influ-
ence of change in pH on structure-derived molecular descriptors gave a deeper and better
understanding of the molecules being studied and their retention pattern in the RPLC mode.
The method of feature selection also affects the retention prediction performances. Stacking
could be an excellent approach to combine predictions coming from different models, and
could obtain better performances. QSRR modeling using a multitarget approach could
be an advanced and more convenient way to deal with retention predictions with many
experimental conditions.

We expect that the current study will provide the initial guiding points for a practical
and effective method for analytical chemists working with LC platforms to obtain an optional
working condition, as well as a way to improve the predictive confidence of studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28041696/s1.
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