[en] We report the generation and analysis of single-cell RNA-Seq data (> 38,000 cells) from mouse native retinae and induced pluripotent stem cell (iPSC)-derived retinal organoids at four matched stages of development spanning the emergence of the major retinal cell types. We combine information from temporal sampling, visualization of 3D UMAP manifolds, pseudo-time and RNA velocity analyses, to show that iPSC-derived 3D retinal organoids broadly recapitulate the native developmental trajectories. However, we observe relaxation of spatial and temporal transcriptome control, premature emergence and dominance of photoreceptor precursor cells, and susceptibility of dynamically regulated pathways and transcription factors to culture conditions in retinal organoids. We demonstrate that genes causing human retinopathies are enriched in cell-type specifying genes and identify a subset of disease-causing genes with expression profiles that are highly conserved between human retinae and murine retinal organoids. This study provides a resource to the community that will be useful to assess and further improve protocols for ex vivo recapitulation and study of retinal development.
Disciplines :
Genetics & genetic processes
Author, co-author :
Georges, Anouk ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'ophtalmologie
Lavergne, Arnaud ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Mandai, Michiko; Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
We are grateful to Tomoyo Hashiguchi for teaching the retinal organoid culture protocol and to Tomohiro Masuda and Akishi Onishi for their comments and suggestions. We thank the GIGA Genomics platform for their help both with scRNA-Seq experiments and early bio-informatic analyses (especially Wouter Coppieters and Benoit Charloteaux). We are grateful to Vincent Lambert for assisting with dissection of NaR. This work was financially supported by the “King Baudouin Foundation”, the “Global Ophthalmology Awards Program (GOAP) from Bayer”, and the “Fonds Leon Fredericq”. L.D. and L.N. are respectively postdoctoral researcher and senior associate researcher of the FRS-FNRS.
Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011). DOI: 10.1038/nature09941
Meyer, J. S. et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29, 1206–1218 (2011). DOI: 10.1002/stem.674
Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012). DOI: 10.1016/j.stem.2012.05.009
Li, J. Q. et al. Retinal diseases in Europe. https://www.euretina.org/downloads/EURETINA_Retinal_Diseases.pdf (2017).
Achberger, K., Haderspeck, J. C., Kleger, A. & Liebau, S. Stem cell-based retina models. Adv. Drug Deliv. Rev. 140, 33–50 (2019). DOI: 10.1016/j.addr.2018.05.005
Jin, Z.-B. et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6, e17084 (2011). DOI: 10.1371/journal.pone.0017084
Völkner, M. et al. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Rep. 6, 525–538 (2016). DOI: 10.1016/j.stemcr.2016.03.001
Clark, B. S. et al. Single-cell RNA-Seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron 102, 1111-1126.e5 (2019). DOI: 10.1016/j.neuron.2019.04.010
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). DOI: 10.1016/j.cell.2015.05.002
Rheaume, B. A. et al. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9, 2759 (2018). DOI: 10.1038/s41467-018-05134-3
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308-1323.e30 (2016). DOI: 10.1016/j.cell.2016.07.054
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016). DOI: 10.1038/nmeth.3971
Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019). DOI: 10.1038/s41587-019-0071-9
Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020). DOI: 10.1038/s41587-020-0591-3
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018). DOI: 10.1038/s41586-018-0414-6
Camara, P. G. Methods and challenges in the analysis of single-cell RNA-sequencing data. Curr. Opin. Syst. Biol. 7, 47–53 (2018). DOI: 10.1016/j.coisb.2017.12.007
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). DOI: 10.1038/nbt.2859
Collin, J. et al. Deconstructing retinal organoids: Single cell RNA-Seq reveals the cellular components of human pluripotent stem cell-derived retina. Stem Cells 37, 593–598 (2019). DOI: 10.1002/stem.2963
Cowan, C. S. et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623-1640.e34 (2020). DOI: 10.1016/j.cell.2020.08.013
Kim, S. et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc. Natl. Acad. Sci. U.S.A. 116, 10824–10833 (2019). DOI: 10.1073/pnas.1901572116
Sridhar, A. et al. Single-cell transcriptomic comparison of human fetal retina, hPSC-derived retinal organoids, and long-term retinal cultures. Cell Rep. 30, 1644-1659.e4 (2020). DOI: 10.1016/j.celrep.2020.01.007
Assawachananont, J. et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2, 662–674 (2014). DOI: 10.1016/j.stemcr.2014.03.011
Homma, K. et al. Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors. Stem Cells 31, 1149–1159 (2013). DOI: 10.1002/stem.1372
Mandai, M. et al. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Rep. 8, 69–83 (2017). DOI: 10.1016/j.stemcr.2016.12.008
Tucker, B. A. et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6, e18992 (2011). DOI: 10.1371/journal.pone.0018992
Akimoto, M. et al. Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc. Natl. Acad. Sci. U.S.A. 103, 3890–3895 (2006). DOI: 10.1073/pnas.0508214103
Osakada, F. et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol. 26, 215–224 (2008). DOI: 10.1038/nbt1384
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). DOI: 10.1038/nbt.4096
McInnes, L., Healy, J., Saul, N. & Großberger, L. U. M. A. P. Uniform manifold approximation and projection. JOSS 3, 861 (2018). DOI: 10.21105/joss.00861
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016). DOI: 10.1126/science.aad0501
Trimarchi, J. M., Cho, S.-H. & Cepko, C. L. Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Dev. Dyn. 238, 2327–2329 (2009). DOI: 10.1002/dvdy.21973
Liu, J. et al. Tbr1 instructs laminar patterning of retinal ganglion cell dendrites. Nat. Neurosci. 21, 659–670 (2018). DOI: 10.1038/s41593-018-0127-z
Bassett, E. A. & Wallace, V. A. Cell fate determination in the vertebrate retina. Trends Neurosci. 35, 565–573 (2012). DOI: 10.1016/j.tins.2012.05.004
Reese, B. E. Development of the retina and optic pathway. Vis. Res. 51, 613–632 (2011). DOI: 10.1016/j.visres.2010.07.010
Kuwahara, A. et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun. 6, 6286 (2015). DOI: 10.1038/ncomms7286
Fabregat, A. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018). DOI: 10.1093/nar/gkx1132
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020).
Kanamori, M. et al. A genome-wide and nonredundant mouse transcription factor database. Biochem. Biophys. Res. Commun. 322, 787–793 (2004). DOI: 10.1016/j.bbrc.2004.07.179
Bowne, S. J., Sullivan, L. S. & Daiger, S. P. RetNet—Retinal Information Network. https://sph.uth.edu/retnet/.
Brooks, M. J. et al. Improved retinal organoid differentiation by modulating signaling pathways revealed by comparative transcriptome analyses with development in vivo. Stem Cell Rep. 13, 891–905 (2019). DOI: 10.1016/j.stemcr.2019.09.009
Krijthe, J. H. Rtsne: T-Distributed Stochastic Neighbor Embedding using Barnes-Hut Implementation. R package version 0.16 (2015).