Inorganic Chemistry; Organic Chemistry; Physical and Theoretical Chemistry; Computer Science Applications; Spectroscopy; Molecular Biology; General Medicine; Catalysis
Abstract :
[en] A series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 µM. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 µM was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 µM. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an ‘averaged’ selection-driven interaction pattern was produced based in namely ‘pseudo–consensus’ 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Bak, Andrzej ; Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
Kos, Jiri ; Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
Degotte, Gilles ; Université de Liège - ULiège > Université de Liège - ULiège ; I2BM, Department of Molecular Chemistry, University Grenoble-Alpes, Rue de la Chimie 570, 38610 Gieres, France
Swietlicka, Aleksandra; Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
Strharsky, Tomas ; Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
Pindjakova, Dominika; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
Gonec, Tomas ; Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
Smolinski, Adam ; GiG Research Institute, Pl. Gwarkow 1, 40-166 Katowice, Poland
Francotte, Pierre ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Frederich, Michel ; Université de Liège - ULiège > Département de pharmacie > Pharmacognosie
Kozik, Violetta; Institute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
Jampilek, Josef ; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia ; Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
Language :
English
Title :
Towards Arginase Inhibition: Hybrid SAR Protocol for Property Mapping of Chlorinated N-arylcinnamamides
Fondation Léon Fredericq Comenius University Bratislava F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
This work was supported by the Fondation Léon Frédéricq, FRS-FNRS (FC23283), and by the Operation Program of Integrated Infrastructure for the project, UpScale of Comenius University Capacities and Competence in Research, Development and Innovation, ITMS2014+: 313021BUZ3, co-financed by the European Regional Development Fund.
Greenwood B.M. Fidock D.A. Kyle D.E. Kappe S.H.I. Alonso P.L. Collins F.H. Duffy P.E. Malaria: Progress, perils, and prospects for eradication J. Clin. Investig. 2008 118 1266 1276 10.1172/JCI33996 18382739
Snow R.W. Guerra C.A. Noor A.M. Myint H.Y. Hay S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria Nature 2005 434 214 217 10.1038/nature03342 15759000
Cox-Singh J. Davis T.M.E. Lee K.-S. Shamsul S.S.G. Matusop A. Ratnam S. Rahman H.A. Conway D.J. Singh B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening Clin. Infect. Dis. 2008 46 165 171 10.1086/524888 18171245
Mackintosh C.L. Beeson J.G. Marsh K. Clinical features and pathogenesis of severe malaria Trends Parasitol. 2004 20 597 603 10.1016/j.pt.2004.09.006
Prudencio M. Rodriguez A. Mota M.M. The silent path to thousands of merozoites: The Plasmodium liver stage Nat. Rev. Microbiol. 2006 4 849 856 10.1038/nrmicro1529
Olszewski K.L. Morrisey J.M. Wilinski D. Burns J.M. Vaidya A.B. Rabinowitz J.D. Llinas M. Hostparasite interactions revealed by Plasmodium falciparum metabolomics Cell Host Microbe. 2009 5 191 199 10.1016/j.chom.2009.01.004 19218089
Meireles P. Mendes A.M. Aroeira R.I. Mounce B.C. Vignuzzi M. Staines H.M. Prudencio M. Uptake and metabolism of arginine impact Plasmodium development in the liver Sci. Rep. 2017 7 4072 10.1038/s41598-017-04424-y
Vincendeau P. Gobert A.P. Daulouede S. Moynet D. Mossalayi M.D. Arginases in parasitic diseases Trends Parasitol. 2003 19 9 12 10.1016/S1471-4922(02)00010-7
Fairlamb A.H. Cerami A. Metabolism and functions of trypanothione in the kinetoplastida Annu. Rev. Microbiol. 1992 46 695 729 10.1146/annurev.mi.46.100192.003403
Bagnost T. Ma L. da Silva R.F. Rezakhaniha R. Houdayer C. Stergiopulos N. Andre C. Guillaume Y. Berthelot A. Demougeot C. Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension Cardiovasc. Res. 2010 87 569 577 10.1093/cvr/cvq081
Singh R. Pervin S. Karimi A. Cederbaum S. Chaudhuri G. Arginase activity in human breast cancer cell lines: Nω -hydroxy-l-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells Cancer Res. 2000 60 3305 3312
Boucher J.L. Custot J. Vadon S. Delaforge M. Lepoivre M. Tenu J.P. Yapo A. Mansuy D. Nω-hydroxy-l-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase Biochem. Biophys. Res. Commun. 1994 203 1614 1621 10.1006/bbrc.1994.2371
Morris S.M. Recent advances in arginine metabolism: Roles and regulation of the arginases Br. J. Pharmacol. 2009 157 922 930 10.1111/j.1476-5381.2009.00278.x 19508396
Montrieux E. Perera W.H. García M. Maes L. Cos P. Monzote L. In vitro and in vivo activity of major constituents from Pluchea carolinensis against Leishmania amazonensis Parasitol. Res. 2014 113 2925 2932 10.1007/s00436-014-3954-1
da Silva E.R. Brogi S. Grillo A. Campiani G. Gemma S. Vieira P.C. Maquiaveli C.D.C. Cinnamic acids derived compounds with antileishmanial activity target Leishmania amazonensis arginase Chem. Biol. Drug Des. 2018 93 139 146 10.1111/cbdd.13391 30216691
da Silva E.R. Come J.A.A.d.S.S. Brogi S. Calderone V. Chemi G. Campiani G. Oliveira T.M.F.d.S. Pham T.N. Pudlo M. Girard C. et al. Cinnamides target Leishmania amazonensis arginase selectively Molecules 2020 25 5271 10.3390/molecules25225271
Come J.A.A.d.S.S. Zhuang Y. Li T. Brogi S. Gemma S. Liu T. da Silva E.R. In vitro and in silico analyses of new cinnamid and rosmarinic acid-derived compounds biosynthesized in Escherichia coli as Leishmania amazonensis arginase inhibitors Pathogens 2022 11 1020 10.3390/pathogens11091020
Gaikwad N. Nanduri S. Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships Eur. J. Med. Chem. 2019 181 111561 10.1016/j.ejmech.2019.07.064
Bunse M. Daniels R. Grundemann C. Heilmann J. Kammerer D.R. Keusgen M. Lindequist U. Melzig M.F. Morlock G.E. Schulz H. et al. Essential oils as multicomponent mixtures and their potential for human health and well-being Front. Pharmacol. 2022 13 956541 10.3389/fphar.2022.956541
Ruwizhi N. Aderibigbe B.A. Cinnamic acid derivatives and their biological efficacy Int. J. Mol. Sci. 2020 21 5712 10.3390/ijms21165712 32784935
Teixeira C. Ventura C. Gomes J.R.B. Gomes P. Martins F. Cinnamic derivatives as antitubercular agents: Characterization by quantitative structure–activity relationship studies Molecules 2020 25 456 10.3390/molecules25030456
Ullah S. Park Y. Ikram M. Lee S. Park C. Kang D. Yang J. Akter J. Yoon S. Chun P. et al. Design, synthesis and anti-melanogenic effect of cinnamamide derivatives Bioorg. Med. Chem. 2018 26 5672 5681 10.1016/j.bmc.2018.10.014 30366788
Pospisilova S. Kos J. Michnova H. Kapustikova I. Strharsky T. Oravec M. Moricz A.M. Bakonyi J. Kauerova T. Kollar P. et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides Int. J. Mol. Sci. 2018 19 2318 10.3390/ijms19082318 30087309
Kos J. Bak A. Kozik V. Jankech T. Strharsky T. Swietlicka A. Michnova H. Hosek J. Smolinski A. Oravec M. et al. Biological activities and ADMET-related properties of novel set of cinnamanilides Molecules 2020 25 4121 10.3390/molecules25184121
Strharsky T. Pindjakova D. Kos J. Vrablova L. Michnova H. Hosek J. Strakova N. Lelakova V. Leva L. Kavanova L. et al. Study of biological activities and ADMET-related properties of novel chlorinated N-arylcinnamamides Int. J. Mol. Sci. 2022 23 3159 10.3390/ijms23063159 35328580
Dowling D.P. Ilies M. Olszewski K.L. Portugal S. Mota M.M. Llinas M. Christianson D.W. Crystal structure of arginase from Plasmodium falciparum and implications for l-arginine depletion in malarial infection Biochemistry 2010 49 5600 5608 10.1021/bi100390z
Muller I.B. Walter R.D. Wrenger C. Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum Biol. Chem. 2005 386 117 126 10.1515/BC.2005.015
DePristo M.A. Zilversmit M.M. Hartl D.L. On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins Gene 2006 378 19 30 10.1016/j.gene.2006.03.023
Di Costanzo L. Sabio G. Mora A. Rodriguez P.C. Ochoa A.C. Centeno F. Christianson D.W. Crystal structure of human arginase I at 1.29-Å resolution and exploration of inhibition in the immune response Proc. Natl. Acad. Sci. USA 2005 102 13058 13063 10.1073/pnas.0504027102
Van de Waterbeemd H. Gifford E. ADMET in silico modelling: Towards prediction paradise? Nat. Rev. Drug Discov. 2003 2 192 204 10.1038/nrd1032 12612645
Bak A. Kozik V. Walczak M. Fraczyk J. Kaminski Z. Kolesinska B. Smolinski A. Jampilek J. Towards intelligent drug design system: Application of artificial dipeptide receptor library in QSAR-oriented studies Molecules 2018 23 1964 10.3390/molecules23081964 30082652
Potemkin V. Grishina M. Principles for 3D/4D QSAR classification of drugs Drug Discov. Today 2008 13 952 959 10.1016/j.drudis.2008.07.006
Bak A. Kos J. Michnova H. Gonec T. Pospisilova S. Kozik V. Cizek A. Smolinski A. Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides Int. J. Mol. Sci. 2020 21 6583 10.3390/ijms21186583
Empel A. Bak A. Kozik V. Latocha M. Cizek A. Jampilek J. Suwinska K. Sochanik A. Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues Int. J. Mol. Sci. 2021 22 12826 10.3390/ijms222312826
Bak A. Kozik V. Smolinski A. Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters RSC Adv. 2016 6 76183 76205 10.1039/C6RA15820J
Kos J. Kozik V. Pindjakova D. Jankech T. Smolinski A. Stepankova S. Hosek J. Oravec M. Jampilek J. Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors Int. J. Mol. Sci. 2021 22 3444 10.3390/ijms22073444
Bak A. Pizova H. Kozik V. Vorcakova K. Kos J. Treml J. Odehnalova K. Oravec M. Imramovsky A. Bobal P. et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors Int. J. Mol. Sci. 2019 20 5385 10.3390/ijms20215385
Lopez-Lopez E. Prieto-Martinez F.D. Medina-Franco J.L. Activity landscape and molecular modeling to explore the SAR of dual epigenetic inhibitors: A focus on G9a and DNMT1 Molecules 2018 23 3282 10.3390/molecules23123282
Guha R. Van Drie J.H. Assessing how well a modeling protocol captures a structure—Activity landscape J. Chem. Inf. Model. 2008 48 1716 1728 10.1021/ci8001414 18686944
Guha R. Van Drie J.H. Structure—Activity landscape index: Identifying and quantifying activity cliffs J. Chem. Inf. Model. 2008 48 646 658 10.1021/ci7004093 18303878
Bajorath J. Peltason L. Wawer M. Guha R. Lajiness M.S. Van Drie J.H. Navigating structure—Activity landscapes Drug Discov. Today 2009 14 698 705 10.1016/j.drudis.2009.04.003 19410012
Holliday J.D. Salim N. Whittle M. Willett P. Analysis and display of the size dependence of chemical similarity coefficients J. Chem. Inf. Comput. Sci. 2003 43 819 828 10.1021/ci034001x 12767139
Kolb P. Irwin J.J. Docking screens: Right for the right reasons? Curr. Top. Med. Chem. 2009 9 755 770 10.2174/156802609789207091
Chrobak E. Marciniec K. Dabrowska A. Pecak P. Bebenek E. Kadela-Tomanek M. Bak A. Jastrzebska M. Boryczka S. New phosphorus analogs of bevirimat: Synthesis, evaluation of anti-HIV-1 activity and molecular docking study Int. J. Mol. Sci. 2019 20 5209 10.3390/ijms20205209
Verma R.P. Hansch C. An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives ChemBioChem 2004 5 1188 1195 10.1002/cbic.200400094
Sugiura M. Naito Y. Yamaura Y. Fukaya C. Yokoyama K. Inhibitory activities and inhibition specificities of caffeic acid derivatives and related compounds toward 5-lipoxygenase Chem. Pharm. Bull. 1989 37 1039 1043 10.1248/cpb.37.1039
Degotte G. Pirotte B. Francotte P. Frederich M. Potential of caffeic acid derivatives as antimalarial leads Lett. Drug Des. Discov. 2022 19 823 836 10.2174/1570180819666220202160247
Alson S.G. Jansen O. Cieckiewicz E. Rakotoarimanana H. Rafatro H. Degotte G. Francotte P. Frederich M. In-vitro and in-vivo antimalarial activity of caffeic acid and some of its derivatives J. Pharm. Pharmacol. 2018 70 1349 1356 10.1111/jphp.12982
Kos J. Degotte G. Pindjakova D. Strharsky T. Jankech T. Gonec T. Francotte P. Frederich M. Jampilek J. Insights into Antimalarial activity of N-phenyl-substituted cinnamanilides Molecules 2022 27 7799 10.3390/molecules27227799 36431900
Bak A. Kozik V. Smolinski A. Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters SAR QSAR Environ. Res. 2017 28 427 449 10.1080/1062936X.2017.1327459 28573881
Hann M. Oprea T. Pursuing the leadlikeness concept in pharmaceutical research Curr. Opin. Chem. Biol. 2004 8 255 263 10.1016/j.cbpa.2004.04.003 15183323
Bak A. Polanski J. Modeling Robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series J. Chem. Inf. Model. 2007 47 1469 1480 10.1021/ci700025m
Vogt M. Huang Y. Bajorath J. From activity cliffs to activity ridges: Informative data structures for SAR analysis J. Chem. Inf. Model. 2011 51 1848 1856 10.1021/ci2002473
Bak A. Kozik V. Kozakiewicz D. Gajcy K. Strub D.J. Swietlicka A. Stepankova S. Imramovsky A. Polanski J. Smolinski A. et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study Int. J. Mol. Sci. 2019 20 1524 10.3390/ijms20071524
Michnova H. Pospisilova S. Gonec T. Kapustikova I. Kollar P. Kozik V. Musiol R. Jendrzejewska I. Vanco J. Travnicek Z. et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis Molecules 2019 24 2991 10.3390/molecules24162991
Rykowski S. Gurda-Wozna D. Orlicka-Płocka M. Fedoruk-Wyszomirska A. Giel-Pietraszuk M. Wyszko E. Kowalczyk A. Stączek P. Bak A. Kiliszek A. et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents Int. J. Mol. Sci. 2021 22 2772 10.3390/ijms22052772
Polanski J. Bak A. Gieleciak R. Magdziarz T. Modeling robust QSAR J. Chem. Inf. Model. 2003 46 2310 2318 10.1021/ci050314b
Cherkasov A. Muratov E.N. Fourches D. Varnek A. Baskin I.I. Cronin M. Dearden J. Gramatica P. Martin Y.C. Todeschini R. et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014 57 4977 5010 10.1021/jm4004285
Polanski J. Bak A. Gieleciak R. Magdziarz T. Self-organizing neural networks for modeling robust 3D and 4D QSAR: Application to dihydrofolate reductase inhibitors Molecules 2004 9 1148 1159 10.3390/91201148 18007509
Bak A. Kozik V. Malik I. Jampilek J. Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments SAR QSAR Environ. Res. 2018 29 801 821 10.1080/1062936X.2018.1517278
Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading J. Comput. Chem. 2010 31 455 461 10.1002/jcc.21334 19499576
Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings J. Chem. Inf. Model. 2021 61 3891 3898 10.1021/acs.jcim.1c00203
Pham T.N. Bordage S. Pudlo M. Demougeot C. Thai K.M. Girard-Thernier C. Cinnamide derivatives as mammalian arginase inhibitors: Synthesis, biological evaluation and molecular docking Int. J. Mol. Sci. 2016 17 1656 10.3390/ijms17101656
Salentin S. Schreiber S. Haupt V.J. Adasme M.F. Schroeder M. PLIP: Fully automated protein-ligand interaction profiler Nucleic Acids Res. 2015 43 443 447 10.1093/nar/gkv315
Colotti G. Baiocco P. Fiorillo A. Boffi A. Poser E. Di Chiaro F. Ilari A. Structural insights into the enzymes of the trypanothione pathway: Targets for antileishmaniasis drugs Future Med. Chem. 2013 5 1861 1875 10.4155/fmc.13.146
Auffinger P. Hays F.A. Westhof E. Shing Ho P. Halogen bonds in biological molecules Proc. Natl. Acad. Sci. USA 2004 101 16789 16794 10.1073/pnas.0407607101
Scholfield M.R. Vander Zanden C.M. Shing Ho P. Halogen bonding (X-bonding): A biological perspective Protein Sci. 2013 22 139 152 10.1002/pro.2201
Trager W. Jensen J.B. Human malaria parasites in continuous culture Science 1976 193 673 675 10.1126/science.781840 781840
Bero J. Herent M. Schmeda-Hirschmann G. Frederich M. Quetin-Leclercq J. In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents J. Ethnopharmacol. 2013 149 176 183 10.1016/j.jep.2013.06.018 23792125
Murebwayire S. Frederich M. Hannaert V. Jonville M.C. Duez P. Antiplasmodial and antitrypanosomal activity of Triclisia sacleuxii (Pierre) Diels Phytomedicine 2008 15 728 733 10.1016/j.phymed.2007.10.005 18321694
Makler M.T. Ries J.M. Williams J.A. Bancroft J.E. Piper R.C. Gibbins B.L. Hinrichs D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity Am. J. Trop. Med. Hyg. 1993 48 739 741 10.4269/ajtmh.1993.48.739 8333566
Jansen O. Tits M. Angenot L. Nicolas J.P. De Mol P. Nikiema J.B. Frederich M. Antiplasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound Malar. J. 2012 11 289 10.1186/1475-2875-11-289 22909422