Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water
[en] Glyphosate, also known as N-(phosphonomethyl)glycine, is one of the most widely used herbicides in the world. However, the controversy surrounding the toxicity of
glyphosate and its main breakdown product, aminomethylphosphonic acid (AMPA), remains a serious public concern. Therefore, there is a clear need to develop a
rapid, sensitive and automated alternative method for the quantification of glyphosate and AMPA. In this context, surface enhanced Raman spectroscopy (SERS)
coupled with a microfluidic system for the determination of glyphosate in tap water was developed, optimized and validated. The design of the microfluidic
configuration for this application was built constructed to integrate the synthesis of the SERS substrate through to the detection of the analyte. To optimize the
microfluidic setup, a design of experiments approach was used to maximize the SERS signal of glyphosate. Subsequently, an approach based on the European
guideline document SANTE/11312/2021 was used to validate the method in the range of 78–480 μg/L using the normalized band intensities. The limit of detection
and quantification obtained for glyphosate were 40 and 78 μg/L, respectively. Recoveries were in the range 76–117%, while repeatability and intra-day repro-
ducibility were ≤17%. Finally, the method was also tested for the determination of AMPA in tap water matrix and for the simultaneous detection of AMPA and
glyphosate;
Disciplines :
Chemistry
Author, co-author :
Emonds-Alt, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Malherbe, Cédric ; Université de Liège - ULiège > Molecular Systems (MolSys)
Kasemiire, Alice ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Avohou, Tonakpon Hermane ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Hubert, Philippe ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Ziemons, Eric ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Monbaliu, Jean-Christophe ; Université de Liège - ULiège > Département de chimie (sciences) > Center for Integrated Technology and Organic Synthesis
Eppe, Gauthier ; Université de Liège - ULiège > Molecular Systems (MolSys)
Language :
English
Title :
Development and validation of an integrated microfluidic device with an in-line Surface Enhanced Raman Spectroscopy (SERS) detection of glyphosate in drinking water
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Zikankuba, V.L., Mwanyika, G., Ntwenya, J.E., James, A., Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric., 5, 2019, 10.1080/23311932.2019.1601544.
El-Saeid, M.H., Alghamdi, A.G., Identification of pesticide residues and prediction of their fate in agricultural soil, water. Air. Soil Pollut., 231, 2020, 10.1007/s11270-020-04619-6.
Buarque, F.S., Soares, C.M.F., Marques, M.N., Miranda, R. de C.M., Cavalcanti, E.B., Souza, R.L., Lima, Á.S., Simultaneous concentration and chromatographic detection of water pesticides traces using aqueous two-phase system composed of tetrahydrofuran and fructose. Microchem. J. 147 (2019), 303–310, 10.1016/j.microc.2019.03.033.
Liu, A., Kou, W., Zhang, H., Xu, J., Zhu, L., Kuang, S., Huang, K., Chen, H., Jia, Q., Quantification of trace organophosphorus pesticides in environmental water via enrichment by magnetic-zirconia nanocomposites and online extractive electrospray ionization mass spectrometry. Anal. Chem. 92 (2020), 4137–4145, 10.1021/acs.analchem.0c00304.
Reynoso, E.C., Torres, E., Bettazzi, F., Palchetti, I., Trends and perspectives in immunosensors for determination of currently-used pesticides: the case of glyphosate, organophosphates, and neonicotinoids. Biosensors, 9, 2019, 10.3390/bios9010020.
Arabameri, M., Mohammadi Moghadam, M., Monjazeb Marvdashti, L., Mehdinia, S.M., Abdolshahi, A., Dezianian, A., Pesticide residues in pistachio nut: a human risk assessment study. Int. J. Environ. Anal. Chem., 2020, 1–14, 10.1080/03067319.2020.1777289 00.
European Commission. Regulation (EC) No 396/2005, Maximum residue levels of pesticides in/on food and feed of plant and animal. Off. J. Eur. Union L70:48 (2005), 1–16 https://www.fsai.ie/uploadedFiles/Legislation/Food_Legisation_Links/Pesticides_Residues_in_food/Regulation_EC_No_396_2005.pdf.
EC, Council. Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Commities L 330 (1998), 32–54.
Duke, S.O., P.S. B. Glyphosate : a once-in-a-century herbicide. Pest Manag. Sci. 64 (2008), 319–325, 10.1002/ps.
Padilla, J.T., Selim, H.M., Environmental Behavior of Glyphosate in Soils. first ed., 2020, Elsevier Inc., 10.1016/bs.agron.2019.07.005.
M.C., S., Trevors, J.T., Glyphosate in the environment. Water, Air Soil Pollut. 39 (1988), 409–420, 10.1515/jpme.1988.16.1.5.
Kanissery, R., Gairhe, B., Kadyampakeni, D., Batuman, O., Alferez, F., Glyphosate: its environmental persistence and impact on crop health and nutrition. Plants 8 (2019), 1–11, 10.3390/plants8110499.
Struger, J., Thompson, D., Staznik, B., Martin, P., McDaniel, T., Marvin, C., Occurrence of glyphosate in surface waters of southern Ontario. Bull. Environ. Contam. Toxicol. 80 (2008), 378–384, 10.1007/s00128-008-9373-1.
Van Stempvoort, D.R., Spoelstra, J., Senger, N.D., Brown, S.J., Post, R., Struger, J., Glyphosate residues in rural groundwater, nottawasaga river watershed, ontario, Canada. Pest Manag. Sci. 72 (2016), 1862–1872, 10.1002/ps.4218.
Aparicio, V.C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., Costa, J.L., Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93 (2013), 1866–1873, 10.1016/j.chemosphere.2013.06.041.
Pearce, N., Blair, A., Vineis, P., Ahrens, W., Andersen, A., Anto, J.M., Armstrong, B.K., Baccarelli, A.A., Beland, F.A., Berrington, A., Bertazzi, P.A., Birnbaum, L.S., Brownson, R.C., Bucher, J.R., Cantor, K.P., Cardis, E., Cherrie, J.W., Christiani, D.C., Cocco, P., Coggon, D., Comba, P., Demers, P.A., Dement, J.M., Douwes, J., Eisen, E.A., Engel, L.S., Fenske, R.A., Fleming, L.E., Fletcher, T., Fontham, E., Forastiere, F., Frentzel Beyme, R., Fritschi, L., Gerin, M., Goldberg, M., Grandjean, P., Grimsrud, T.K., Gustavsson, P., Haines, A., Hartge, P., Hansen, J., Hauptmann, M., Heederik, D., Hemminki, K., Hemon, D., Hertz-Picciotto, I., Hoppin, J.A., Huff, J., Jarvholm, B., Kang, D., Karagas, M.R., Kjaerheim, K., Kjuus, H., Kogevinas, M., Kriebel, D., Kristensen, P., Kromhout, H., Laden, F., Lebailly, P., Lemasters, G., Lubin, J.H., Lynch, C.F., Lynge, E., Mannetje, A., McMichael, A.J., McLaughlin, J.R., Marrett, L., Martuzzi, M., Merchant, J.A., Merler, E., Merletti, F., Miller, A., Mirer, F.E., Monson, R., Nordby, K.C., Olshan, A.F., Parent, M.E., Perera, F.P., Perry, M.J., Pesatori, A.C., Pirastu, R., Porta, M., Pukkala, E., Rice, C., Richardson, D.B., Ritter, L., Ritz, B., Ronckers, C.M., Rushton, L., Rusiecki, J.A., Rusyn, I., Samet, J.M., Sandler, D.P., de Sanjose, S., Schernhammer, E., Costantini, A.S., Seixas, N., Shy, C., Siemiatycki, J., Silverman, D.T., Simonato, L., Smith, A.H., Smith, M.T., Spinelli, J.J., Spitz, M.R., Stallones, L., Stayner, L.T., Steenland, K., Stenzel, M., Stewart, B.W., Stewart, P.A., Symanski, E., Terracini, B., Tolbert, P.E., Vainio, H., Vena, J., Vermeulen, R., C.G. Victora, E.M. Ward, Weinberg, C.R., Weisenburger, D., Wesseling, C., Weiderpass, E., Zahm, S.H., IARC monographs: 40 years of evaluating carcinogenic hazards to humans. Environ. Health Perspect. 123 (2015), 507–514, 10.1289/ehp.1409149.
Giesy, J.P., Dobson, S., Solomon, K.R., Ware, G.W., (eds.) Ecotoxicological Risk Assessment for Roundup® Herbicide BT - Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, 2000, Springer New York, New York, NY, 35–120, 10.1007/978-1-4612-1156-3_2.
Gauglitz, G., Wimmer, B., Melzer, T., Huhn, C., Glyphosate analysis using sensors and electromigration separation techniques as alternatives to gas or liquid chromatography. Anal. Bioanal. Chem. 410 (2018), 725–746, 10.1007/s00216-017-0679-x.
Koskinen, W.C., Marek, L.J., Hall, K.E., Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil. Pest Manag. Sci. 72 (2016), 423–432, 10.1002/ps.4172.
Goscinny, S., Unterluggauer, H., Aldrian, J., Hanot, V., Masselter, S., Determination of glyphosate and its metabolite AMPA (aminomethylphosphonic acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS. Food Anal. Methods 5 (2012), 1177–1185, 10.1007/s12161-011-9361-7.
Ehling, S., Reddy, T.M., Analysis of glyphosate and aminomethylphosphonic acid in nutritional ingredients and milk by derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry. J. Agric. Food Chem. 63 (2015), 10562–10568, 10.1021/acs.jafc.5b04453.
Liao, Y., Berthion, J.M., Colet, I., Merlo, M., Nougadère, A., Hu, R., Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1549 (2018), 31–38, 10.1016/j.chroma.2018.03.036.
Zhang, W., Feng, Y., Ma, L., An, J., Zhang, H., Cao, M., Zhu, H., Kang, W., Lian, K., A method for determining glyphosate and its metabolite aminomethyl phosphonic acid by gas chromatography-flame photometric detection. J. Chromatogr. A 1589 (2019), 116–121, 10.1016/j.chroma.2018.12.039.
Fontàs, C., Sanchez, J.M., Evaluation and optimization of the derivatization reaction conditions of glyphosate and aminomethylphosphonic acid with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using reversed-phase liquid chromatography. J. Separ. Sci. 43 (2020), 3931–3939, 10.1002/jssc.202000645.
Qian, K., Tang, T., Shi, T., Wang, F., Li, J., Cao, Y., Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal. Chim. Acta 635 (2009), 222–226, 10.1016/j.aca.2009.01.022.
Mallat, E., Barceló, D., Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection. J. Chromatogr. A 823 (1998), 129–136, 10.1016/S0021-9673(98)00362-8.
Wimmer, B., Pattky, M., Zada, L.G., Meixner, M., Haderlein, S.B., Zimmermann, H.P., Huhn, C., Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method development and application to beer beverages and environmental studies. Anal. Bioanal. Chem. 412 (2020), 4967–4983, 10.1007/s00216-020-02751-0.
Schütze, A., Morales-Agudelo, P., Vidal, M., Calafat, A.M., Ospina, M., Quantification of glyphosate and other organophosphorus compounds in human urine via ion chromatography isotope dilution tandem mass spectrometry. Chemosphere, 274, 2021, 129427, 10.1016/j.chemosphere.2020.129427.
López, S.H., Dias, J., de Kok, A., Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control, 115, 2020, 107289, 10.1016/j.foodcont.2020.107289.
Pang, S., Yang, T., He, L., Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal. Chem. (Reference Ed.) 85 (2016), 73–82, 10.1016/j.trac.2016.06.017.
Raman, C.V., Krishnan, K.S., A new type of secondary radiation. Nature 121 (1928), 501–502.
Fleischmann, M., Hendra, P.J., McQuillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26 (1974), 163–166, 10.1007/bf02578984.
Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J., Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403 (2012), 27–54, 10.1007/s00216-011-5631-x.
Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78 (1997), 1667–1670.
Challa S.S.R. Kumar. Raman Spectroscopy for Nanomaterials Characterization. 2012, Springer Berlin Heidelberg, 10.1007/978-3-642-20620-7.
Krafft, B., Panneerselvam, R., Geissler, D., Belder, D., A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes. Anal. Bioanal. Chem. 412 (2020), 267–277, 10.1007/s00216-019-02228-9.
Guo, J., Zeng, F., Guo, J., Ma, X., Preparation and application of microfluidic SERS substrate: challenges and future perspectives. J. Mater. Sci. Technol. 37 (2020), 96–103, 10.1016/j.jmst.2019.06.018.
Jokerst, J.C., Emory, J.M., Henry, C.S., Advances in microfluidics for environmental analysis. Analyst 137 (2012), 24–34, 10.1039/c1an15368d.
Sun, J., Gong, L., Wang, W., Gong, Z., Wang, D., Fan, M., Surface-enhanced Raman spectroscopy for on-site analysis: a review of recent developments. Luminescence 35 (2020), 808–820, 10.1002/bio.3796.
Rendón-Von Osten, J., Dzul-Caamal, R., Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Publ. Health, 14, 2017, 10.3390/ijerph14060595.
Kergaravat, S.V., Fabiano, S.N., Soutullo, A.R., Hernández, S.R., Comparison of the performance analytical of two glyphosate electrochemical screening methods based on peroxidase enzyme inhibition. Microchem. J., 160, 2021, 10.1016/j.microc.2020.105654.
De Castilhos Ghisi, N., Cestari, M.M., Genotoxic effects of the herbicide Roundup® in the fish Corydoras paleatus (Jenyns 1842) after short-term, environmentally low concentration exposure. Environ. Monit. Assess. 185 (2013), 3201–3207, 10.1007/s10661-012-2783-x.
Zhang, C., She, Y., Li, T., Zhao, F., Jin, M., Guo, Y., Zheng, L., Wang, S., Jin, F., Shao, H., Liu, H., Wang, J., A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal. Bioanal. Chem. 409 (2017), 7133–7144, 10.1007/s00216-017-0671-5.
National Health Medical Research Council, Australian Drinking Water Guidelines Paper 6: National Water Quality Management Strategy. 2011 version 3.4 Updated October 2017.
European Commission. Guidance Document on Analytical Quality Control and Method Validation for Pesticide Residues Analysis in Food and Feed SANTE 11312/2021. 2021, 1–57 Sante/11312/2021 https://ec.europa.eu/food/system/files/2022-02/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf.
Creighton, J.A., Blatchford, C.G., Albrecht, M.G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 75 (1979), 790–798, 10.1039/F29797500790.
Emmanuel, N., Emonds-Alt, G., Lismont, M., Eppe, G., Monbaliu, J.C.M., Exploring the fundamentals of microreactor Technology with multidisciplinary lab experiments combining the synthesis and characterization of inorganic nanoparticles. J. Chem. Educ. 94 (2017), 775–780, 10.1021/acs.jchemed.6b00899.
Emonds-Alt, G., Mignolet, B., Malherbe, C., Monbaliu, J.C.M., Remacle, F., Eppe, G., Understanding chemical interaction between phosphonate-derivative molecules and a silver surface cluster in SERS: a combined experimental and computational approach. Phys. Chem. Chem. Phys. 21 (2019), 22180–22187, 10.1039/c9cp01615e.
Verran, G.O., Mendes, R.P.K., Valentina, L.V.O.D., DOE applied to optimization of aluminum alloy die castings. J. Mater. Process. Technol. 200 (2008), 120–125, 10.1016/j.jmatprotec.2007.08.084.
Bodea, A., Leucuta, S.E., Optimization of hydrophilic matrix tablets using a D-optimal design. Int. J. Pharm. 153 (1997), 247–255, 10.1016/S0378-5173(97)00117-8.
Ward, K., Fan, Z.H., Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng., 25, 2015, 10.1088/0960-1317/25/9/094001.
Caetano, M.S., Ramalho, T.C., Botrel, D.F., Da Cunha, E.F.F., De Mello, W.C., Understanding the inactivation process of organophosphorus herbicides: a DFT study of glyphosate metallic complexes with Zn2+, Ca 2+, Mg2+, Cu2+, Co3+, Fe 3+, Cr3+, and Al3+. Int. J. Quant. Chem. 112 (2012), 2752–2762, 10.1002/qua.23222.
Gros, P., Ahmed, A.A., Kühn, O., Leinweber, P., Influence of metal ions on glyphosate detection by FMOC-Cl. Environ. Monit. Assess., 191, 2019, 10.1007/s10661-019-7387-2.
Freuze, I., Jadas-Hecart, A., Royer, A., Communal, P.Y., Influence of complexation phenomena with multivalent cations on the analysis of glyphosate and aminomethyl phosphonic acid in water. J. Chromatogr. A 1175 (2007), 197–206, 10.1016/j.chroma.2007.10.092.
Barwick, V.J., Ellison, S.L.R., Development and Harmonisation of Measurement Uncertainty Principles Part (D): Protocol for Uncertainty Evaluation from Validation Data V J Barwick and S L R Ellison Protocol for Uncertainty Evaluation from Validation Data. 2000.
Skeff, W., Neumann, C., Schulz-Bull, D.E., Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study. Mar. Pollut. Bull. 100 (2015), 577–585, 10.1016/j.marpolbul.2015.08.015.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.