[en] Bacterial genes coding for antibiotic resistance represent a major issue in the fight against bacterial pathogens. Among those, genes encoding beta-lactamases target penicillin and related compounds such as carbapenems, which are critical for human health. Beta-lactamases are classified into classes A, B, C, and D, based on their amino acid sequence. Class D enzymes are also known as OXA beta-lactamases, due to the ability of the first enzymes described in this class to hydrolyze oxacillin. While hundreds of class D beta-lactamases with different activity profiles have been isolated from clinical strains, their nomenclature remains very uninformative. In this work, we have carried out a comprehensive survey of a reference database of 80,490 genomes and identified 24,916 OXA-domain containing proteins. These were deduplicated and their representative sequences clustered into 45 non-singleton groups derived from a phylogenetic tree of 1,413 OXA-domain sequences, including five clusters that include the C-terminal domain of the BlaR membrane receptors. Interestingly, 801 known class D beta-lactamases fell into only 18 clusters. To probe the unknown diversity of the class, we selected 10 protein sequences in 10 uncharacterized clusters and studied the activity profile of the corresponding enzymes. A beta-lactamase activity could be detected for seven of them. Three enzymes (OXA-1089, OXA-1090 and OXA-1091) were active against oxacillin and two against imipenem. These results indicate that, as already reported, environmental bacteria constitute a large reservoir of resistance genes that can be transferred to clinical strains, whether through plasmid exchange or hitchhiking with the help of transposase genes. IMPORTANCE The transmission of genes coding for resistance factors from environmental to nosocomial strains is a major component in the development of bacterial resistance toward antibiotics. Our survey of class D beta-lactamase genes in genomic databases highlighted the high sequence diversity of the enzymes that are able to recognize and/or hydrolyze beta-lactam antibiotics. Among those, we could also identify new beta-lactamases that are able to hydrolyze carbapenems, one of the last resort antibiotic families used in human antimicrobial chemotherapy. Therefore, it can be expected that the use of this antibiotic family will fuel the emergence of new beta-lactamases into clinically relevant strains.
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture FPS Health Federal Public Service Health, Food Chain Safety and Environment ULiège - University of Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
RF 17/6317 RU-BLA-ESBL-CPE; SFRD-12/04; J.0080.15
Funding text :
V.L. is supported by a Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA) fellowship of the FRS-FNRS. F.K. is a research associate of the FRS-FNRS. M.G. and P.S.M. were supported by the Belgian Federal Public Service Health, Food Chain Safety and Environment (Grant No. RF 17/6317 RU-BLA-ESBL-CPE). Computational resources were provided through two grants to DB (University of Liège “Crédit de démarrage 2012” SFRD-12/04; FRS-FNRS “Crédit de recherche 2014” CDR J.0080.15). We thank Mohammed Terrak and Adrien Boes for useful advice at the initial stage of the project and Hiba Jabri for her help with the OBO dictionary.
Abraham EP, Chain E. 1940. An enzyme from bacteria able to destroy penicillin. Nature 146:837-837. https://doi.org/10.1038/146837a0.
Livermore DM. 2000. Antibiotic resistance in staphylococci. Int J Antimicrob Agents 16:3-10. https://doi.org/10.1016/S0924-8579(00)00299-5.
Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance.MicrobiolMol Biol Rev 74:417-433. https://doi.org/10.1128/MMBR.00016-10.
Waley SG. 1992. ß-Lactamase: mechanism of action, p 198-228. In Page MI (ed), The chemistry of b-lactams. Springer, Dordrecht, the Netherlands.
Bebrone C, Garau G, Garcia-Saez I, Chantalat L, Carfi A, Dideberg O. 2012. X-ray Structures and Mechanisms of Metallo-ß-Lactamase, p 41-77. In Frère J-M (ed), Beta-lactamases. Nova Science Publishers, New York, NY, USA.
Bush K. 2018. Past and Present Perspectives on b-Lactamases. Antimicrob Agents Chemother 62. https://doi.org/10.1128/AAC.01076-18.
Philippon A, Jacquier H, Ruppé E, Labia R. 2019. Structure-based classification of class A beta-lactamases, an update. Curr Res Transl Med 67: 115-122. https://doi.org/10.1016/j.retram.2019.05.003.
Sougakoff W. 2012. Structure of class A beta-lactamases, p 21-39. In Frère J-M (ed), Beta-lactamases. Nova Science Publishers, New York, NY, USA.
Castanheira M, Simner PJ, Bradford PA. 2021. Extended-spectrum b-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist 3:dlab092. https://doi.org/10.1093/jacamr/dlab092.
Danel F, Frère JM, Livermore DM. 2001. Evidence of dimerisation among class D beta-lactamases: kinetics of OXA-14 beta-lactamase. BiochimBiophys Acta 1546:132-142. https://doi.org/10.1016/S0167-4838(01)00133-9.
Golemi D, Maveyraud L, Vakulenko S, Samama JP, Mobashery S. 2001. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci U S A 98:14280-14285. https://doi.org/10.1073/pnas.241442898.
Ledent P, Frère JM. 1993. Substrate-induced inactivation of the OXA2 betalactamase. BiochemJ 295:871-878. https://doi.org/10.1042/bj2950871.
Poirel L, Naas T, Nordmann P. 2010. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother 54:24-38. https://doi.org/10.1128/AAC.01512-08.
Zhu YF, Curran IH, Joris B, Ghuysen JM, Lampen JO. 1990. Identification of BlaR, the signal transducer for beta-lactamase production in Bacillus licheniformis, as a penicillin-binding protein with strong homology to the OXA-2 beta-lactamase (class D) of Salmonella typhimurium. J Bacteriol 172:1137-1141. https://doi.org/10.1128/jb.172.2.1137-1141.1990.
Colombo M-L, Hanique S, Baurin SL, Bauvois C, De Vriendt K, Van Beeumen JJ, Frère J-M, Joris B. 2004. The ybxI gene of Bacillus subtilis 168 encodes a class D beta-lactamase of low activity. Antimicrob Agents Chemother 48:484-490. https://doi.org/10.1128/AAC.48.2.484-490.2004.
Toth M, Antunes NT, Stewart NK, Frase H, Bhattacharya M, Smith CA, Vakulenko SB. 2016. Class D b-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 12:9-14. https://doi.org/10.1038/nchembio.1950.
Hardt K, Joris B, Lepage S, Brasseur R, Lampen JO, Frère JM, Fink AL, Ghuysen JM. 1997. The penicillin sensory transducer, BlaR, involved in the inducibility of beta-lactamase synthesis in Bacillus licheniformis is embedded in the plasma membrane via a four-alpha-helix bundle. Mol Microbiol 23:935-944. https://doi.org/10.1046/j.1365-2958.1997.2761642.x.
Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. 2009. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 3:243-251. https://doi.org/10.1038/ismej.2008.86.
Keshri V, Panda A, Levasseur A, Rolain J-M, Pontarotti P, Raoult D. 2018. Phylogenomic analysis of b-lactamase in archaea and bacteria enables the identification of putative new members. Genome Biol Evol 10:1106-1114. https:// doi.org/10.1093/gbe/evy028.
Sengupta S, Chattopadhyay MK, Grossart H-P. 2013. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4: 47. https://doi.org/10.3389/fmicb.2013.00047.
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. 2011. Carbapenems: past, present, and future. Antimicrob Agents Chemother 55: 4943-4960. https://doi.org/10.1128/AAC.00296-11.
Dewi DAPR, Thomas T, Ahmad Mokhtar AM, Mat Nanyan NS, Zulfigar SB, Salikin NH. 2021. Carbapenem resistance among marine bacteria-an emerging threat to the global health sector. Microorganisms 9:2147. https:// doi.org/10.3390/microorganisms9102147.
Cherak Z, Loucif L, Moussi A, Rolain J-M. 2021. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 25:287-309. https://doi.org/10.1016/j.jgar.2021.03.024.
Lupo V, Van Vlierberghe M, Vanderschuren H, Kerff F, Baurain D, Cornet L. 2021. Contamination in reference sequence databases: time for divide-and-rule tactics. FrontMicrobiol 12:755101. https://doi.org/10.3389/fmicb.2021.755101.
Toth M, Stewart NK, Smith C, Vakulenko SB. 2018. Intrinsic class D b-lactamases of clostridiumdifficile.mBio 9. https://doi.org/10.1128/mBio.01803-18.
Diene SM, Pinault L, Armstrong N, Azza S, Keshri V, Khelaifia S, Chabrière E, Caetano-Anolles G, Rolain J-M, Pontarotti P, Raoult D. 2020. Dual RNase and b-lactamase activity of a single enzyme encoded in Archaea. Life Basel Switz 10:280. https://doi.org/10.3390/life10110280.
Sun Z, Zhou D, Zhang X, Li Q, Lin H, Lu W, Liu H, Lu J, Lin X, Li K, Xu T, Bao Q, Zhang H. 2020. Determining the genetic characteristics of resistance and virulence of the "epidermidis cluster group" through pan-genome analysis. Front Cell Infect Microbiol 10:274. https://doi.org/10.3389/fcimb.2020.00274.
Rodríguez MM, Power P, Radice M, Vay C, Famiglietti A, Galleni M, Ayala JA, Gutkind G. 2004. Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob Agents Chemother 48:4895-4897. https://doi.org/10.1128/AAC.48.12.4895-4897.2004.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583-589. https://doi.org/10.1038/s41586-021-03819-2.
Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150-3152. https:// doi.org/10.1093/bioinformatics/bts565.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772-780. https://doi.org/10.1093/molbev/mst010.
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37: 420-423. https://doi.org/10.1038/s41587-019-0036-z.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567-580. https://doi.org/10.1006/jmbi.2000.4315.
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236-1240. https://doi.org/10.1093/bioinformatics/btu031.
Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276-277. https://doi.org/10.1016/s0168-9525(00)02024-2.
Garcia PS, Jauffrit F, Grangeasse C, Brochier-Armanet C. 2019. GeneSpy, a user-friendly and flexible genomic context visualizer. Bioinformatics 35: 329-331. https://doi.org/10.1093/bioinformatics/bty459.
Krawczyk PS, Lipinski L, Dziembowski A. 2018. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 46:e35. https://doi.org/10.1093/nar/gkx1321.
Philippe H. 1993. MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 21:5264-5272. https://doi.org/10.1093/nar/21.22.5264.
Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https:// doi.org/10.1093/bioinformatics/btu033.
Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, Gascuel O. 2018. Renewing Felsenstein's phylogenetic bootstrap in the era of big data. Nature 556:452-456. https://doi.org/10.1038/s41586-018-0043-0.
Hackathon R, Bolker B, ButlerM, Cowan P V D de, Eddelbuettel D, HolderM, Jombart T, Kembel S, Michonneau F, Orme D, O'Meara B, Paradis E, Regetz J, Zwickl D. 2019. phylobase: base package for phylogenetic structures and comparative data. https://CRAN.R-project.org/package=phylobase.
Jombart T, Balloux F, Dray S. 2010. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26:1907-1909. https://doi.org/10.1093/bioinformatics/btq292.
Califice S, Baurain D, Hanikenne M, Motte P. 2012. A single ancient origin for prototypical serine/arginine-rich splicing factors. Plant Physiol 158: 546-560. https://doi.org/10.1104/pp.111.189019.
Steiner D, Forrer P, Stumpp MT, Plückthun A. 2006. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 24:823-831. https://doi.org/10.1038/nbt1218.
Wyatt PJ. 2021. Differential light scattering and the measurement of molecules and nanoparticles: A review. Anal Chim Acta X 7-8:100070. https:// doi.org/10.1016/j.acax.2021.100070.
Cornish-Bowden A. 1995. Fundamentals of enzyme kinetics pp 343. Portland Press, London, UK. https://books.google.be/books?id=\_jZzQgAACAAJ