HDAC1; antiproliferative activity; hydrolysate; inhibitory activity; molecular docking; Food Science; Microbiology; Health (social science); Health Professions (miscellaneous); Plant Science
Abstract :
[en] Quinoa peptides are the bioactive components obtained from quinoa protein digestion, which have been proved to possess various biological activities. However, there are few studies on the anticancer activity of quinoa peptides, and the mechanism has not been clarified. In this study, the novel quinoa peptides were obtained from quinoa protein hydrolysate and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The anticancer activity of these peptides was predicted by PeptideRanker and evaluated using an antiproliferative assay in colon cancer Caco-2 cells. Combined with the result of histone deacetylase 1 (HDAC1) inhibitory activity assay, the highly anticancer activity peptides FHPFPR, NWFPLPR, and HYNPYFPG were screened and further investigated. Molecular docking was used to analyze the binding site between peptides and HDAC1, and results showed that three peptides were bound in the active pocket of HDAC1. Moreover, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot showed that the expression of HDAC1, NFκB, IL-6, IL-8, Bcl-2 was significantly decreased, whereas caspase3 expression showed a remarkable evaluation. In conclusion, quinoa peptides may have the potential to protect against cancer development by inhibiting HDAC1 activity and regulating the expression of the cancer-related genes, which indicates that these peptides could be explored as functional foods to alleviate colon cancer.
Disciplines :
Biotechnology
Author, co-author :
Fan, Xin ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech ; Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
Guo, Huimin ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech ; Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
Teng, Cong; Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
Zhang, Biao; College of Pharmacy and Biological Engineering, Chengdu University, No. 1 Shilling Road, Chenglo Avenue, Longquan District, Chengdu 610106, China
Blecker, Christophe ; Université de Liège - ULiège > Département GxABT > Smart Technologies for Food and Biobased Products (SMARTECH)
Ren, Guixing; Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China ; College of Pharmacy and Biological Engineering, Chengdu University, No. 1 Shilling Road, Chenglo Avenue, Longquan District, Chengdu 610106, China
Language :
English
Title :
Anti-Colon Cancer Activity of Novel Peptides Isolated from In Vitro Digestion of Quinoa Protein in Caco-2 Cells.
Funding: This research was funded by the Agricultural Science and Technology Innovation Program of CAAS (Quality and Stress Resistance Traits Evaluation of Crop Germplasm Resource).
Yan, W.; Sun, C.J.; Yuan, J.W.; Yang, N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci. Rep. 2017, 7, 45308. [CrossRef]
Muenchau, S.; Deutsch, R.; de Castro, I.J.; Hielscher, T.; Heber, N.; Niesler, B.; Lusic, M.; Stanifer, M.L.; Boulant, S. Hypoxic Environment Promotes Barrier Formation in Human Intestinal Epithelial Cells through Regulation of MicroRNA 320a Expression. Mol. Cell. Biol. 2019, 39, e00553-18. [CrossRef]
Wang, Q.M.; He, R.Z.; Tan, T.; Li, J.; Hu, Z.; Luo, W.H.; Duan, L.L.; Luo, W.N.; Luo, D.X. A novel long non-coding RNA-KAT7 is low expressed in colorectal cancer and acts as a tumor suppressor. Cancer Cell Int. 2019, 19, 40. [CrossRef] [PubMed]
Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and beverages and colorectal cancer risk: A systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [CrossRef] [PubMed]
Neri-Numa, I.A.; Carvalho-Silva, L.B.; Morales, J.P.; Malta, L.G.; Muramoto, M.T.; Ferreira, J.E.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Marostica, M.R.; Pastore, G.M. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araca-boi fruit (Eugenia stipitata Mc Vaugh—Myrtaceae) of the Brazilian Amazon Forest. Food Res. Int. 2013, 50, 70–76. [CrossRef]
Ruales, J.; Nair, B.M. Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods Hum. Nutr. 1992, 42, 1–11. [CrossRef]
Swieca, M.; Seczyk, L.; Gawlik-Dziki, U.; Dziki, D. Bread enriched with quinoa leaves—The influence of protein-phenolics interactions on the nutritional and antioxidant quality. Food Chem. 2014, 162, 54–62. [CrossRef] [PubMed]
Vilcacundo, R.; Miralles, B.; Carrillo, W.; Hernandez-Ledesma, B. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Res. Int. 2018, 105, 403–411. [CrossRef] [PubMed]
Srdic, M.; Ovcina, I.; Fotschki, B.; Haros, C.M.; Llopis, J.M.L. C. quinoa and S. hispanica L. Seeds Provide Immunonutritional Agonists to Selectively Polarize Macrophages. Cells 2020, 9, 593. [CrossRef]
Guo, H.M.; Hao, Y.Q.; Richel, A.; Everaert, N.; Chen, Y.N.; Liu, M.J.; Yang, X.S.; Ren, G.X. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. J. Sci. Food Agric. 2020, 100, 5569–5576. [CrossRef] [PubMed]
Zhang, L.B.; Bu, L.; Hu, J.; Xu, Z.Y.; Ruan, L.B.; Fang, Y.; Wang, P. HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells. Biol. Chem. 2018, 399, 603–610. [CrossRef]
Weichert, W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009, 280, 168–176. [CrossRef]
Eshelman, M.A.; Shah, M.; Raup-Konsavage, W.M.; Rennoll, S.A.; Yochum, G.S. TCF7L1 recruits CtBP and HDAC1 to repress DICKKOPF4 gene expression in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 2017, 487, 716–722. [CrossRef]
Selokar, N.L.; St John, L.; Revay, T.; King, W.A.; Singla, S.K.; Madan, P. Effect of Histone Deacetylase Inhibitor Valproic Acid Treatment on Donor Cell Growth Characteristics, Cell Cycle Arrest, Apoptosis, and Handmade Cloned Bovine Embryo Production Efficiency. Cell. Reprogram. 2013, 15, 531–542. [CrossRef]
Mariadason, J.M. HDACs and HDAC inhibitors in colon cancer. Epigenetics 2008, 3, 28–37. [CrossRef] [PubMed]
Hsieh, C.C.; Martinez-Villaluenga, C.; de Lumen, B.O.; Hernandez-Ledesma, B. Updating the research on the chemopreventive and therapeutic role of the peptide lunasin. J. Sci. Food Agric. 2018, 98, 2070–2079. [CrossRef] [PubMed]
Galvez, A.F.; Chen, N.; Macasieb, J.; de Lumen, B.O. Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res. 2001, 61, 7473–7478.
Dia, V.P.; de Mejia, E.G. Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Lett. 2010, 295, 44–53. [CrossRef]
Tang, Z.H.; Ding, S.J.; Huang, H.L.; Luo, P.F.; Qing, B.H.; Zhang, S.Y.; Tang, R.T. HDAC1 triggers the proliferation and migration of breast cancer cells via upregulation of interleukin-8. Biol. Chem. 2017, 398, 1347–1356. [CrossRef]
Hartman, Z.C.; Poage, G.M.; den Hollander, P.; Tsimelzon, A.; Hill, J.; Panupinthu, N.; Zhang, Y.; Mazumdar, A.; Hilsenbeck, S.G.; Mills, G.B.; et al. Growth of Triple-Negative Breast Cancer Cells Relies upon Coordinate Autocrine Expression of the Proinflammatory Cytokines IL-6 and IL-8. Cancer Res. 2013, 73, 3470–3480. [CrossRef]
Phuagkhaopong, S.; Ospondpant, D.; Kasemsuk, T.; Sibmooh, N.; Soodvilai, S.; Power, C.; Vivithanaporn, P. Cadmium-induced IL-6 and IL-8 expression and release from astrocytes are mediated by MAPK and NF-kappa B. Neurotoxicology 2017, 60, 82–91. [CrossRef]
Zhu, H.Q.; Shan, L.M.; Schiller, P.W.; Mai, A.; Peng, T.Q. Histone Deacetylase-3 Activation Promotes Tumor Necrosis Factor-alpha (TNF-alpha) Expression in Cardiomyocytes during Lipopolysaccharide Stimulation. J. Biol. Chem. 2010, 285, 9429–9436. [CrossRef] [PubMed]
Chen, C.; Wei, M.; Wang, C.; Sun, D.P.; Liu, P.; Zhong, X.; He, Q.S.; Yu, W.B. The histone deacetylase HDAC1 activates HIF1 alpha/VEGFA signal pathway in colorectal cancer. Gene 2020, 754, 144851. [CrossRef]
Liu, X.F.; Yu, Y.; Zhang, J.N.; Lu, C.X.; Wang, L.M.; Liu, P.; Song, H. HDAC1 Silencing in Ovarian Cancer Enhances the Chemotherapy Response. Cell. Physiol. Biochem. 2018, 48, 1505–1518. [CrossRef]
Trott, O.; Olson, A.J. Software News and Update AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef] [PubMed]
Singh, J.K.; Simoes, B.M.; Howell, S.J.; Farnie, G.; Clarke, R.B. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 2013, 15, 210. [CrossRef] [PubMed]
Hwang, W.L.; Yang, M.H.; Tsai, M.L.; Lan, H.Y.; Su, S.H.; Chang, S.C.; Teng, H.W.; Yang, S.H.; Lan, Y.T.; Chiou, S.H.; et al. SNAIL Regulates Interleukin-8 Expression, Stem Cell-Like Activity, and Tumorigenicity of Human Colorectal Carcinoma Cells. Gastroenterology 2011, 141, 279–291.e5. [CrossRef] [PubMed]
Wyatt, M.; Greathouse, K.L. Targeting Dietary and Microbial Tryptophan-Indole Metabolism as Therapeutic Approaches to Colon Cancer. Nutrients 2021, 13, 1189. [CrossRef]
Montserrat-de la Paz, S.; Martinez-Lopez, A.; Villanueva-Lazo, A.; Pedroche, J.; Millan, F.; Millan-Linares, M.C. Identification and Characterization of Novel Antioxidant Protein Hydrolysates from Kiwicha (Amaranthus caudatus L.). Antioxidants 2021, 10, 645. [CrossRef]
Jumeri; Kim, S.M. Antioxidant and Anticancer Activities of Enzymatic Hydrolysates of Solitary Tunicate (Styela clava). Food Sci. Biotechnol. 2011, 20, 1075. [CrossRef]
Kannan, A.; Hettiarachchy, N.; Johnson, M.G.; Nannapaneni, R. Human Colon and Liver Cancer Cell Proliferation Inhibition by Peptide Hydrolysates Derived from Heat-Stabilized Defatted Rice Bran. J. Agric. Food Chem. 2008, 56, 11643–11647. [CrossRef]
Gonzalez-Montoya, M.; Hernandez-Ledesma, B.; Silvan, J.M.; Mora-Escobedo, R.; Martinez-Villaluenga, C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem. 2018, 242, 75–82. [CrossRef]
Rayaprolu, S.J.; Hettiarachchy, N.S.; Chen, P.Y.; Kannan, A.; Mauromostakos, A. Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Res. Int. 2013, 50, 282–288. [CrossRef]
Sheih, I.C.; Fang, T.J.; Wu, T.K.; Lin, P.H. Anticancer and Antioxidant Activities of the Peptide Fraction from Algae Protein Waste. J. Agric. Food Chem. 2010, 58, 1202–1207. [CrossRef]
Hernandez-Ledesma, B.; Davalos, A.; Bartolome, B.; Amigo, L. Preparation of antioxidant enzymatic hydrolysates from (alpha-lactalbumin and beta-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 2005, 53, 588–593. [CrossRef]
Cheung, K.S.; Chan, E.W.; Seto, W.K.; Wong, I.C.K.; Leung, W.K. ACE (Angiotensin-Converting Enzyme) Inhibitors/Angiotensin Receptor Blockers Are Associated With Lower Colorectal Cancer Risk A Territory-Wide Study With Propensity Score Analysis. Hypertension 2020, 76, 968–975. [CrossRef]
Krishna, S.; Lakra, A.D.; Shukla, N.; Khan, S.; Mishra, D.P.; Ahmed, S.; Siddidi, M.I. Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation. J. Biomol. Struct. Dyn. 2020, 38, 3280–3295. [CrossRef]
Zhang, Y.; Fu, T.T.; Ren, Y.X.; Li, F.C.; Zheng, G.X.; Hong, J.J.; Yao, X.J.; Xue, W.W.; Zhu, F. Selective Inhibition of HDAC1 by Macrocyclic Polypeptide for the Treatment of Glioblastoma: A Binding Mechanistic Analysis Based on Molecular Dynamics. Front. Mol. Biosci. 2020, 7, 41. [CrossRef]
Yuan, L.; Sun, L.P.; Zhuang, Y.L. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: Inhibition kinetics and molecular docking. Food Funct. 2018, 9, 5251–5259. [CrossRef]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Investig. 2014, 124, 30–39. [CrossRef] [PubMed]
Zhou, W.L.; Zhang, D.; Li, Z.P.; Jiang, H.Q.; Li, J.N.; Ren, R.R.; Gao, X.F.; Li, J.F.; Wang, X.; Wang, W.F.; et al. The fecal microbiota of patients with pancreatic ductal adenocarcinoma and autoimmune pancreatitis characterized by metagenomic sequencing. J. Transl. Med. 2021, 19, 215. [CrossRef] [PubMed]
Hoshimoto, A.; Suzuki, Y.; Katsuno, T.; Nakajima, H.; Saito, Y. Caprylic acid and medium-chain triglycerides inhibit IL-8 gene transcription in Caco-2 cells: Comparison with the potent histone deacetylase inhibitor trichostatin A. Br. J. Pharmacol. 2002, 136, 280–286. [CrossRef]
Fan, X.; Qin, P.Y.; Hao, Y.Q.; Guo, H.M.; Blecker, C.; Everaert, N.; Ren, G.X. Overexpression of Soybean-Derived Lunasin in Wheat and Assessment of Its Anti-Proliferative Activity in Colorectal Cancer HT-29 Cells. Int. J. Mol. Sci. 2020, 21, 9594. [CrossRef]