Article (Scientific journals)
Interpretable One-Class Classification of Raman Spectra Using Prediction Bands Estimated by Wavelet Regression.
Avohou, Tonakpon Hermane; Sacre, Pierre-Yves; Hubert, Philippe et al.
2022In Analytical Chemistry, 94, p. 4183-4191
Peer Reviewed verified by ORBi
 

Files


Full Text
HAVOHOU_ANAL_CHEM_2022.pdf
Publisher postprint (2.55 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Analytical Chemistry; One-class classification; Raman spectroscopy; Prediction bands; Wavelet regression; Pharmaceutical products
Abstract :
[en] Previously, we introduced a novel one-class classification (OCC) concept for spectra. It uses as acceptance space for genuine spectra of the target chemical, a prediction band in the wavelengths' space. As a decision rule, test spectra falling substantially outside this band are rejected as noncomplying with the target, and their deviations are documented in the wavelengths' space. This band-based OCC concept was applied to smooth signals like near-infrared (NIR) spectra. A regression model based on a smoothed principal component (PC) representation of the training spectra was used to predict unseen trajectories of future spectra. The boundaries of the most central predicted trajectories were chosen as critical trajectories. We now propose a methodology to construct a similar band-based one-class classifier for Raman spectra, which are sharper and noisier than NIR spectra. The spectra are transformed by a composition of wavelet and principal component (wPC) expansions instead of just a PC expansion in the previous methodology for NIR spectra. Wavelets can capture sharp features of Raman signals and provide a framework to efficiently denoise them. A multinormal prediction model is then used to derive predictions of future wPC scores of unseen spectra. These predicted wPC scores are then backtransformed to obtain predictions of future trajectories of unseen spectra in the wavelengths' space, whose most central region defines the acceptance band or space. This band-based one-class classifier successfully classified the first derivatives of real pharmaceutical Raman spectra, while enjoying the advantage of documenting deviations from the critical trajectories in the wavelengths' space and hence is more interpretable.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Mathematics
Chemistry
Life sciences: Multidisciplinary, general & others
Pharmacy, pharmacology & toxicology
Author, co-author :
Avohou, Tonakpon Hermane  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Sacre, Pierre-Yves  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Hubert, Philippe  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Ziemons, Eric  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
Interpretable One-Class Classification of Raman Spectra Using Prediction Bands Estimated by Wavelet Regression.
Publication date :
04 March 2022
Journal title :
Analytical Chemistry
ISSN :
0003-2700
eISSN :
1520-6882
Publisher :
American Chemical Society (ACS), United States
Volume :
94
Pages :
4183-4191
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Vibra4Fake
Funders :
SPW - Service Public de Wallonie
Funding number :
7517.
Available on ORBi :
since 09 March 2022

Statistics


Number of views
95 (10 by ULiège)
Number of downloads
4 (3 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
3
OpenCitations
 
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi