[en] The present paper presents the interactions between water retention/evaporation and cracking during the desiccation of intact and disturbed Belgian Luvisol. The disturbed (DS) and undisturbed (NDS) samples (reduced-tillage-residue-in (RTRI) and conventional-tillage-residue-out (CTRO)) were collected from an agricultural field in Gembloux, Wallonia, Belgium. The drying experiment took place in controlled laboratory conditions at 25 °C. Moisture content, soil suction and surface cracks were monitored with a precision balance, a tensiometer and a digital camera, respectively. The image processing and analysis were performed using PCAS® and ImageJ® software. The results showed that crack formation was initiated at a stronger negative suction and a lower water content (Wc) in DS > CTRO > RTRI. The suction and the crack propagation were positively correlated until 300 kPa for the DS and far beyond the wilting point for the NDS. For the NDS, the cracking accelerated after reaching the critical water content (~20% Wc) which arrived at the end of the plateau of evaporation (40 h after crack initiation). The Krischer curve revealed that the soil pore size > 50 µm, and that it is likely that cracks are important parameters for soil permeability. The soil structure and soil fibre content could influence the crack formation dynamic during drying. The agricultural tillage management also influences the crack propagation. As retention and conductivity functions are affected by cracks, it is likely that the movement of fluids in the soil will also be affected by the cracks following a desiccation period (i.e., when the cracked soil is rewetted).
Gentile, A.R.; Barceló-Cordón, S.; Van Liedekerke, M. JRC Publications Repository—Soil Country Analyses—Belgium. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC53315 (accessed on 20 September 2021). [CrossRef]
Stoops, G.; Langohr, R.; Van Ranst, E. Micromorphology of Soils and Palaeosoils in Belgium. An Inventory and Meta-Analysis. Catena 2020, 194, 104718. [CrossRef]
Shepidchenko, T.; Zhang, J.; Tang, X.; Liu, T.; Dong, Z.; Zheng, G.; Yang, L. Experimental Study of the Main Controlling Factors of Desiccation Crack Formation from Mud to Shale. J. Pet. Sci. Eng. 2020, 194, 107414. [CrossRef]
Lakshmikantha, M.R.; Prat, P.C.; Ledesma, A. Image Analysis for the Quantification of a Developing Crack Network on a Drying Soil. Geotech. Test. J. 2009, 32, 505–515. [CrossRef]
Zeng, H.; Tang, C.; Cheng, Q.; Inyang, H.I.; Rong, D.; Lin, L.; Shi, B. Coupling Effects of Interfacial Friction and Layer Thickness on Soil Desiccation Cracking Behavior. Eng. Geol. 2019, 260, 105220. [CrossRef]
Tang, C.S.; Cui, Y.J.; Tang, A.M.; Shi, B. Experiment Evidence on the Temperature Dependence of Desiccation Cracking Behavior of Clayey Soils. Eng. Geol. 2010, 114, 261–266. [CrossRef]
Merlin, O.; Stefan, V.; Amazirh, A.; Chanzy, A.; Ceschia, E.; Er-Raki, S.; Gentine, P.; Tallec, T.; Ezzahar, J.; Bircher, S.; et al. Modeling Soil Evaporation Efficiency in a Range of Soil and Atmospheric Conditions Using a Meta-Analysis Approach. Water Resour. Res. 2016, 52, 3663–3684. [CrossRef]
Aguilar Torres, M.A.; De Luna Armenteros, E.; Ordóñez Fernández, R.; González Fernández, P. Digital Image Analysis for the Estimation of Cracked Areas and the Soil Shrinkage Characteristic Curve in Clay Soils Amended with Composted Sewage Sludge. Span. J. Agric. Res. 2004, 2, 473–479. [CrossRef]
Lu, Y.; Gu, K.; Zhang, Y.; Tang, C.; Shen, Z.; Shi, B. Impact of Biochar on the Desiccation Cracking Behavior of Silty Clay and Its Mechanisms. Sci. Total Environ. 2021, 794, 148608. [CrossRef]
Weninger, T.; Julich, S.; Feger, K.-H.; Schwärzel, K.; Bodner, G.; Schwen, A. Effects of Tillage Intensity on Pore System and Physical Quality of Silt-Textured Soils Detected by Multiple Methods. Soil Res. 2019, 57, 703–711. [CrossRef]
Tang, C.; Shi, B.; Liu, C.; Zhao, L.; Wang, B. Influencing Factors of Geometrical Structure of Surface Shrinkage Cracks in Clayey Soils. Eng. Geol. 2008, 101, 204–217. [CrossRef]
Tang, C.S.; Cui, Y.J.; Shi, B.; Tang, A.M.; Liu, C. Desiccation and Cracking Behaviour of Clay Layer from Slurry State under Wetting-Drying Cycles. Geoderma 2011, 166, 111–118. [CrossRef]
Peron, H.; Hueckel, T.; Laloui, L.; Hu, L.B. Fundamentals of Desiccation Cracking of Fine-Grained Soils: Experimental Characterisation and Mechanisms Identification. Can. Geotech. J. 2009, 46, 1177–1201. [CrossRef]
Zhang, X.; Xin, X.; Zhu, A.; Zhang, J.; Yang, W. Effects of Tillage and Residue Managements on Organic C Accumulation and Soil Aggregation in a Sandy Loam Soil of the North China Plain. Catena 2017, 156, 176–183. [CrossRef]
Mihashi, H.; Ahmed, S.F.U.; Mizukami, T.; Nishiwaki, T. Quantification of Crack Formation Using Image Analysis and Its Relationship with Permeability TT—Bauinstandsetzen Und Baudenkmalpflege: Eine Internationale Zeitschrift. Restor. Build. Monum. an Int. J. Bauinstandsetz. und Baudenkmalpfl. eine Int. Zeitschrift 2006, 12, 335–348.
Léonard, A. Étude Du Séchage Convectif de Boues de Station d’épuration—Suivi de La Texture Par Microtomographie à Rayons X. Ph.D. Dissertation, Université de Liège, Liège, Belgique, 2002.
Kowalski, S.J. Thermomechanics of Drying Processes; Lecture Notes in Applied and Computational Mechanics; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; Volume 8.
Hubert, J.; Plougonven, E.; Prime, N.; Léonard, A.; Collin, F. Comprehensive Study of the Drying Behavior of Boom Clay: Experimental Investigation and Numerical Modeling. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 211–230. [CrossRef]
Al-Dakheeli, H.; Bulut, R.; Clarke, C.R.; Nevels, J.B. Hydro-Mechanical Analysis of Crack Initiation in Expansive Soils. In Geotechnical Special Publication; Ascelibrary: Dallas, TX, USA, 2018; pp. 332–340. [CrossRef]
Lomeling, D.; Kenyi, M.C.; Lodiong, M.A.; Kenyi, M.S.; Silvestro, G.M.; Yieb, J.L.L. Characterizing Dessication Cracking of a Remolded Clay (Eutric Vertisol) Using the Fractal Dimension Approach. Open J. Soil Sci. 2016, 6, 68–80. [CrossRef]
WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [CrossRef]
Degrune, F.; Theodorakopoulos, N.; Colinet, G.; Hiel, M.P.; Bodson, B.; Taminiau, B.; Daube, G.; Vandenbol, M.; Hartmann, M. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes. Front. Microbiol. 2017, 8, 1127. [CrossRef]
Tran, D.K.; Ralaizafisoloarivony, N.; Charlier, R.; Mercatoris, B.; Léonard, A.; Toye, D.; Degré, A. Studying the Effect of Desiccation Cracking on the Evaporation Process of a Luvisol—From a Small-Scale Experimental and Numerical Approach. Soil Tillage Res. 2019, 193, 142–152. [CrossRef]
Song, W.K.; Cui, Y.J. Modelling of Water Evaporation from Cracked Clayey Soil. Eng. Geol. 2020, 266, 105465. [CrossRef]
Gerard, P.; Mahdad, M.; Mccormack, A.R.; François, B. A Unified Failure Criterion for Unstabilized Rammed Earth Materials upon Varying Relative Humidity Conditions. Constr. Build. Mater. 2015, 95, 437–447. [CrossRef]
van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [CrossRef]
Durner, W. Hydraulic Conductivity Estimation for Soils with Heterogeneous Pore Structure. Water Resour. Res. 1994, 30, 211–223. [CrossRef]
Seki, K. SWRC Fit—A Nonlinear Fitting Program with a Water Retention Curve for Soils Having Unimodal and Bimodal Pore Structure. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 407–437. [CrossRef]
Chang, C.-C.; Cheng, D.-H. Predicting the Soil Water Retention Curve from the Particle Size Distribution Based on a Pore Space Geometry Containing Slit-Shaped Spaces. Hydrol. Earth Syst. Sci. 2018, 22, 4621–4632. [CrossRef]
Le Roux, S.; Medjedoub, F.; Dour, G.; Rézaï-Aria, F. Image Analysis of Microscopic Crack Patterns Applied to Thermal Fatigue Heat-Checking of High Temperature Tool Steels. Micron 2013, 44, 347–358. [CrossRef] [PubMed]
Inan Sezer, G.; Ramyar, K.; Karasu, B.; Burak Göktepe, A.; Sezer, A. Image Analysis of Sulfate Attack on Hardened Cement Paste. Mater. Des. 2008, 29, 224–231. [CrossRef]
Wang, L.L.; Tang, C.S.; Shi, B.; Cui, Y.J.; Zhang, G.Q.; Hilary, I. Nucleation and Propagation Mechanisms of Soil Desiccation Cracks. Eng. Geol. 2018, 238, 27–35. [CrossRef]
Zhu, L.; Shen, T.; Ma, R.; Fan, D.; Zhang, Y.; Zha, Y. Development of Cracks in Soil: An Improved Physical Model. Geoderma 2020, 366, 114258. [CrossRef]
Bishop, A.W. The Principle of Effective Stress. In Teknisk Ukeblad 39; Norges Geotekniske Institutes: Oslo, Norway, 1960; pp. 859–863.
Terzaghi, K. Theoretical Soil Mechanics; John Wiley & Sons, Inc.: London, UK, 1943. [CrossRef]
Yiotis, A.G.; Tsimpanogiannis, I.N.; Stubos, A.K.; Yortsos, Y.C. Pore-Network Study of the Characteristic Periods in the Drying of Porous Materials. J. Colloid Interface Sci. 2006, 297, 738–748. [CrossRef]