Article (Scientific journals)
Selection of essential spectra to improve the multivariate curve resolution of minor compounds in complex pharmaceutical formulations
Coic, Laureen; Sacre, Pierre-Yves; Dispas, Amandine et al.
2022In Analytica Chimica Acta, 1198, p. 339532
Peer Reviewed verified by ORBi
 

Files


Full Text
preprint author.pdf
Author preprint (2.67 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Raman; FT-IR; hyperspectral imaging; MCR-ALS; Data reduction; Essential spectral pixels (ESPs); Falsified medicines
Abstract :
[en] Multivariate curve resolution unmixing of hyperspectral imaging data can be challenging when low sources of variance are present in complex samples, as for minor (low-concentrated) chemical compounds in pharmaceutical formulations. In this work, it was shown how the reduction of hyperspectral imaging data matrices through the selection of essential spectra can be crucial for the analysis of complex unknown pharmaceutical formulation applying Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS). Results were obtained on simulated datasets and on real FT-IR and Raman hyperspectral images of both genuine and falsified tablets. When simulating the presence of minor compounds, different situations were investigated considering the presence of single pixels of pure composition as well as binary and ternary mixtures. The comparison of the results obtained applying MCR-ALS on the reduced data matrices with those obtained on the full matrices revealed unequivocal: more accurate decomposition could be achieved when only essential spectra were analyzed. Indeed, when analyzing the full dataset, MCR-ALS failed resolving minor compounds even though pure spectra were provided as initial estimation, as shown for Raman hyperspectral imaging data obtained on a medicine sample containing 7 chemical compounds. In contrast, when considering the reduced dataset, all minor contributions (down to 1 pixel over 17,956) were successfully unmixed. The same conclusion could be drawn from the results obtained analysing FT-IR hyperspectral imaging data of a falsified medicine.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Coic, Laureen  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Sacre, Pierre-Yves  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Dispas, Amandine  ;  Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
De Bleye, Charlotte  ;  Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Fillet, Marianne  ;  Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Ruckebusch, Cyril;  Université de Lille Science et technologie > LASIRE CNRS
Hubert, Philippe  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Ziemons, Eric  ;  Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Language :
English
Title :
Selection of essential spectra to improve the multivariate curve resolution of minor compounds in complex pharmaceutical formulations
Publication date :
March 2022
Journal title :
Analytica Chimica Acta
ISSN :
0003-2670
eISSN :
1873-4324
Publisher :
Elsevier, Netherlands
Volume :
1198
Pages :
339532
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FEDER - Fonds Européen de Développement Régional
FWB - Fédération Wallonie-Bruxelles
Available on ORBi :
since 26 January 2022

Statistics


Number of views
110 (11 by ULiège)
Number of downloads
6 (4 by ULiège)

Scopus citations®
 
12
Scopus citations®
without self-citations
7
OpenCitations
 
2
OpenAlex citations
 
23

Bibliography


Similar publications



Contact ORBi