Kinetics and persistence of the cellular and humoral immune responses to BNT162b2 mRNA vaccine in SARS-CoV-2-naive and -experienced subjects: impact of booster dose and breakthrough infections
Desmecht, Salomé; Tashkeev, Aleksandr; El Moussaoui, Majdoulineet al.
[en] Background: Understanding and measuring the individual level of immune protection
and its persistence at both humoral and cellular levels after SARS-CoV-2 vaccination is
mandatory for the management of the vaccination booster campaign. Our prospective
study was designed to assess the immunogenicity of the BNT162b2 mRNA vaccine in
triggering the cellular and humoral immune response in healthcare workers up to 12
months after the initial vaccination, with one additional boosting dose between 6 and 12
months.Methods: This prospective study enrolled 208 healthcare workers (HCWs) from the Liège
University Hospital (CHU) of Liège in Belgium. Participants received two doses of
BioNTech/Pfizer COVID-19 vaccine (BNT162b2) and a booster dose 6-12 months
later. Fifty participants were SARS-CoV-2 experienced and 158 were naïve before the
vaccination. Blood sampling was performed at the day of the first (T0) and second (T1)
vaccine doses administration, then at 2 weeks (T2), 4 weeks (T3), 6 months (T4) and 12
months (T5) after the second dose. Between T4 and T5, participants also got the third
boosting vaccine dose. A total of 1145 blood samples were collected. All samples were tested for the presence of anti-Spike antibodies, using the DiaSorin LIAISON SARS-CoV2 TrimericS IgG assay, and for anti-Nucleocapsid antibodies, using Elecsys anti-SARSCoV-2 assay. Neutralizing antibodies against the SARS-CoV-2 Wuhan-like variant strain
were quantified in all samples using a Vero E6 cell-based neutralization-based assay. Cellmediated immune response was evaluated at T4 and T5 on 80 and 55 participants,
respectively, by measuring the secretion of IFN-g on peripheral blood lymphocytes using
the QuantiFERON Human IFN-g SARS-CoV-2, Qiagen. We analyzed separately the naïve
and experienced participants.
Findings: We found that anti-spike antibodies and neutralization capacity levels were
significantly higher in SARS-CoV-2 experienced HCWs compared to naïve HCWs at all
time points analyzed except the one after boosting dose. Cellular immune response was
also higher in experienced HCWs six months following vaccination. Besides the impact of
SARS-CoV-2 infection history on immune response to BNT162b2 mRNA vaccine, we
observed a significant negative association between age and persistence of humoral
response. The booster dose induced an increase in humoral and cellular immune
responses, particularly in naive individuals. Breakthrough infections resulted in higher
cellular and humoral responses after the booster dose.
Conclusions: Our data strengthen previous findings demonstrating that immunization
through vaccination combined with natural infection is better than 2 vaccine doses
immunization or natural infection alone. The benefit of the booster dose was greater in
naive individuals. It may have implications for personalizing mRNA vaccination regimens
used to prevent severe COVID-19 and reduce the impact of the pandemic on the
healthcare system. More specifically, it may help prioritizing vaccination, including for
the deployment of booster doses.
Disciplines :
Immunology & infectious disease
Author, co-author :
Desmecht, Salomé ✱; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Département des maladies infectieuses et parasitaires (DMI)
Tashkeev, Aleksandr ✱; Université de Liège - ULiège > GIGA Medical Genomics - Unit of Animal Genomics
El Moussaoui, Majdouline ; Université de Liège - ULiège > Département des sciences cliniques > Immunopathologie - Maladies infectieuses et médecine interne générale ; Université de Liège - ULiège > GIGA > GIGA I3 - Immunology & Infectious Diseases
MARECHAL, Nicole ; Centre Hospitalier Universitaire de Liège - CHU > > Service des maladies infectieuses - médecine interne
Perée, Hélène ; Université de Liège - ULiège > GIGA ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
Tokunaga, Yumie ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
Polese, Barbara ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Université de Liège - ULiège > GIGA > GIGA I3 - Cellular and Molecular Immunology
Legrand, Céline ; Université de Liège - ULiège > Département des sciences fonctionnelles (DSF) > Biochimie et biologie moléculaire ; Université de Liège - ULiège > GIGA > GIGA I3 - Cellular and Molecular Immunology
Wéry, Marie ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
Mni, Myriam ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
Fouillien, Nicolas ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
TOUSSAINT, Françoise ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Gillet, Laurent ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
LUTTERI, Laurence ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
HAYETTE, Marie-Pierre ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
MOUTSCHEN, Michel ; Université de Liège - ULiège > Département des sciences cliniques > Immunopathologie - Maladies infectieuses et médecine interne générale ; Centre Hospitalier Universitaire de Liège - CHU > > Service des maladies infectieuses - médecine interne
MEURIS, Christelle ; Université de Liège - ULiège > Département des sciences cliniques > Immunopathologie - Maladies infectieuses et médecine interne générale ; Centre Hospitalier Universitaire de Liège - CHU > > Service des maladies infectieuses - médecine interne
Vermeersch, Pieter ✱; Clinical Department of Laboratory Medicine and National Reference Center for Respiratory Pathogens, University Hospitals Leuven, Leuven, Belgium
Desmecht, Daniel ✱; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Rahmouni, Souad ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
DARCIS, Gilles ✱; Centre Hospitalier Universitaire de Liège - CHU > > Service des maladies infectieuses - médecine interne ; Université de Liège - ULiège > Département des sciences cliniques
✱ These authors have contributed equally to this work.
Language :
English
Title :
Kinetics and persistence of the cellular and humoral immune responses to BNT162b2 mRNA vaccine in SARS-CoV-2-naive and -experienced subjects: impact of booster dose and breakthrough infections
Publication date :
2022
Journal title :
Frontiers in Immunology
eISSN :
1664-3224
Publisher :
Frontiers Research Foundation, Lausanne, Switzerland
Polack FP Thomas SJ Kitchin N Absalon J Gurtman A Lockhart S et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med (2020) 383(27):2603–15. doi: 10.1056/nejmoa2034577
Baden LR El Sahly HM Essink B Kotloff K Frey S Novak R et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med (2021) 384(5):403–16. doi: 10.1056/nejmoa2035389
Reis BY Barda N Leshchinsky M Kepten E Hernán MA Lipsitch M et al. Effectiveness of BNT162b2 Vaccine Against Delta Variant in Adolescents. N Engl J Med (2021) 385(22):2101–03. doi: 10.1056/nejmc2114290
Ali K Berman G Zhou H Deng W Faughnan V Coronado-Voges M et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. N Engl J Med (2021) 385(24):2241–51. doi: 10.1056/nejmoa2109522
Thomas SJ Moreira ED Kitchin N Absalon J Gurtman A Lockhart S et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine Through 6 Months. N Engl J Med (2021) 385(19):1761–73. doi: 10.1056/nejmoa2110345
Walter EB Talaat KR Sabharwal C Gurtman A Lockhart S Paulsen GC et al. Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age. N Engl J Med (2021) 386(1):35–46. doi: 10.1056/nejmoa2116298
Goldberg Y Mandel M Bar-On YM Bodenheimer O Freedman L Haas EJ et al. Waning Immunity After the BNT162b2 Vaccine in Israel. N Engl J Med (2021) 385(24):e85. doi: 10.1056/nejmoa2114228
Chemaitelly H Tang P Hasan MR AlMukdad S Yassine HM Benslimane FM et al. Waning of BNT162b2 Vaccine Protection Against SARS-CoV-2 Infection in Qatar. N Engl J Med (2021) 385(24):e83. doi: 10.1056/nejmoa2114114
Rosenberg ES Dorabawila V Easton D Bauer UE Kumar J Hoen R et al. Covid-19 Vaccine Effectiveness in New York State. N Engl J Med (2021) 386(2):116–27. doi: 10.1056/nejmoa2116063
Bruxvoort KJ Sy LS Qian L Ackerson BK Luo Y Lee GS et al. Effectiveness of mRNA-1273 Against Delta, Mu, and Other Emerging Variants of SARS-CoV-2: Test Negative Case-Control Study. BMJ (2021) 375:e068848. doi: 10.1136/bmj-2021-068848
Collier AY Yu J McMahan K Liu J Chandrashekar A Maron JS et al. Differential Kinetics of Immune Responses Elicited by Covid-19 Vaccines. N Engl J Med (2021) 385(21):2010–12. doi: 10.1056/nejmc2115596
Guerrera G Picozza M D’Orso S Placido R Pirronello M Verdiani A et al. BNT162b2 Vaccination Induces Durable SARS-CoV-2–Specific T Cells With a Stem Cell Memory Phenotype. Sci Immunol (2021) 6(66):eabl5344. doi: 10.1126/sciimmunol.abl5344
Goel RR Painter MM Apostolidis SA Mathew D Meng W Rosenfeld AM et al. mRNA Vaccines Induce Durable Immune Memory to SARS-CoV-2 and Variants of Concern. Science (2021) 374(6572):abm0829. doi: 10.1126/science.abm0829
Uriu K Kimura I Shirakawa K Takaori-Kondo A Nakada T Kaneda A et al. Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum. N Engl J Med (2021) 385(25):2397–99. doi: 10.1056/nejmc2114706
Garcia-Beltran WF St. Denis KJ Hoelzemer A Lam EC Nitido AD Sheehan ML et al. mRNA-Based COVID-19 Vaccine Boosters Induce Neutralizing Immunity Against SARS-CoV-2 Omicron Variant. Cell (2022) 185(3):457–66.e4. doi: 10.1016/j.cell.2021.12.033
Muhsen K Maimon N Mizrahi A Varticovschi B Bodenheimer O Gelbshtein U et al. Effects of BNT162b2 Covid-19 Vaccine Booster in Long-Term Care Facilities in Israel. N Engl J Med (2021) 386(4):399–401. doi: 10.1056/NEJMc2117385
Barda N Dagan N Cohen C Hernán MA Lipsitch M Kohane IS et al. Effectiveness of a Third Dose of the BNT162b2 mRNA COVID-19 Vaccine for Preventing Severe Outcomes in Israel: An Observational Study. Lancet (2021) 398(10316):2093–2100. doi: 10.1016/S0140-6736(21)02249-2
Wu HS Chiu SC Tseng TC Lin SF Lin JH Hsu YF et al. Serologic and Molecular Biologic Methods for SARS-Associated Coronavirus Infection, Taiwan. Emerg Infect Dis (2004) 10(2):304–10. doi: 10.3201/eid1002.030731
Gelman A. Scaling Regression Inputs by Dividing by Two Standard Deviations. Stat Med (2008) 27(15):2865–73. doi: 10.1002/sim.3107
Ontañón J Blas J de Cabo C Santos C Ruiz-Escribano E García A et al. Influence of Past Infection With SARS-CoV-2 on the Response to the BNT162b2 mRNA Vaccine in Health Care Workers: Kinetics and Durability of the Humoral Immune Response. EBioMedicine (2021) 73:103656. doi: 10.1016/j.ebiom.2021.103656
Samanovic MI Cornelius AR Gray-Gaillard SL Allen JR Karmacharya T Wilson JP et al. Robust Immune Responses Are Observed After One Dose of BNT162b2 mRNA Vaccine Dose in SARS-CoV-2 Experienced Individuals. Sci Transl Med (2021) 14(631):eabi8961. doi: 10.1126/scitranslmed.abi8961
Levin EG Lustig Y Cohen C Fluss R Indenbaum V Amit S et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine Over 6 Months. N Engl J Med (2021) 385(24):e84. doi: 10.1056/nejmoa2114583
Dan JM Mateus J Kato Y Hastie KM Yu ED Faliti CE et al. Immunological Memory to SARS-CoV-2 Assessed for Up to 8 Months After Infection. Science (2021) 371(6529):eabf4063. doi: 10.1126/science.abf4063
Khoury DS Cromer D Reynaldi A Schlub TE Wheatley AK Juno JA et al. Neutralizing Antibody Levels Are Highly Predictive of Immune Protection From Symptomatic SARS-CoV-2 Infection. Nat Med (2021) 27(7):1205–11. doi: 10.1038/s41591-021-01377-8
Addetia A Crawford KHD Dingens A Zhu H Roychoudhury P Huang ML et al. Neutralizing Antibodies Correlate With Protection From SARS-CoV-2 in Humans During a Fishery Vessel Outbreak With a High Attack Rate. J Clin Microbiol (2020) 58:e02107–20. doi: 10.1128/JCM.02107-20
Lumley SF O’Donnell D Stoesser NE Matthews PC Howarth A Hatch SB et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N Engl J Med (2021) 384:533–40. doi: 10.1056/nejmoa2034545
Cameroni E Bowen JE Rosen LE Saliba C Zepeda SK Culap K et al. Broadly Neutralizing Antibodies Overcome SARS-CoV-2 Omicron Antigenic Shift. Nature (2022) 602:664–70. doi: 10.1038/s41586-021-04386-2
Corti D Purcell LA Snell G Veesler D. Tackling COVID-19 With Neutralizing Monoclonal Antibodies. Cell (2021) 184:3086–108. doi: 10.1016/j.cell.2021.05.005