Massotte, Laurent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Hartmann, Sebastian
Vitello, Romain ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Albin, R.L., Young, A.B., Penney, J.B., The functional anatomy of basal ganglia disorders. Trends Neurosci. 12 (1989), 366–375, 10.1016/0166-2236(89)90074-X.
Amendola, J., Woodhouse, A., Martin-Eauclaire, M.F., Goaillard, J.M., Ca 2+/cAMP-sensitive covariation of I A and I H voltage dependences tunes rebound firing in dopaminergic neurons. J. Neurosci. 32 (2012), 2166–2181, 10.1523/JNEUROSCI.5297-11.2012.
Bayless-Edwards, L., Winston, V., Lehmann-Horn, F., Arinze, P., Groome, J.R., Jurkat-Rott, K., NaV1.4 DI-S4 periodic paralysis mutation R222W enhances inactivation and promotes leak current to attenuate action potentials and depolarize muscle fibers. Sci. Rep. 8 (2018), 1–13, 10.1038/s41598-018-28594-5.
Blythe, S.N., Atherton, J.F., Bevan, M.D., Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. J. Neurophysiol. 97 (2007), 2837–2850, 10.1152/jn.01157.2006.
Boone, A.N., Senatore, A., Chemin, J., Monteil, A., Spafford, J.D., Gd3+ and calcium sensitive, sodium leak currents are features of weak membrane-glass seals in patch clamp recordings. PloS One, 9, 2014, 10.1371/journal.pone.0098808.
Carvelli, L., Mcdonald, P.W., Blakely, R.D., Defelice, L.J., Dopamine transporters depolarize neurons by a channel mechanism. Proc. Natl. Acad. Sci. Unit. States Am. 101 (2004), 16046–16051, 10.1073/pnas.0403299101.
Chan, C.S., Guzman, J.N., Ilijic, E., Mercer, J.N., Rick, C., Tkatch, T., Meredith, G.E., Surmeier, D.J. ‘Rejuvenation’ protects neurons in mouse models of Parkinson's disease. Nature 447 (2007), 1081–1086, 10.1038/nature05865.
Chua, H.C., Wulf, M., Weidling, C., Rasmussen, L.P., Pless, S.A., The NALCN channel complex is voltage sensitive and directly modulated by extracellular calcium. Sci. Adv., 6, 2020, 10.1126/sciadv.aaz3154.
de Vrind, V., Scuvée-Moreau, J., Drion, G., Hmaied, C., Philippart, F., Engel, D., Seutin, V., Interactions between calcium channels and SK channels in midbrain dopamine neurons and their impact on pacemaker regularity: contrasting roles of N- and l-type channels. Eur. J. Pharmacol. 788 (2016), 274–279, 10.1016/j.ejphar.2016.06.046.
Destreel, G., Seutin, V., Engel, D., Subsaturation of the N‐methyl‐D‐aspartate receptor glycine site allows the regulation of bursting activity in juvenile rat nigral dopamine neurons. Eur. J. Neurosci. 50 (2019), 3454–3471, 10.1111/ejn.14491.
Drion, G., Massotte, L., Sepulchre, R., Seutin, V., How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLoS Comput. Biol., 7, 2011, e1002050, 10.1371/journal.pcbi.1002050.
Dufour, M.A., Woodhouse, A., Amendola, J., Goaillard, J.M., Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons. Elife, 3, 2014, 10.7554/eLife.04059.
Evans, R.C., Zhu, M., Khaliq, Z.M., Dopamine inhibition differentially controls excitability of substantia nigra dopamine neuron subpopulations through T-type calcium channels. J. Neurosci. 37 (2017), 3704–3720, 10.1523/JNEUROSCI.0117-17.2017.
Farassat, N., Costa, Kauê Machado, Stovanovic, S., Albert, S., Kovacheva, L., Shin, J., Egger, R., Somayaji, M., Duvarci, S., Schneider, G., Roeper, J., In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. Elife, 8, 2019, 10.7554/elife.48408.
Galtieri, D.J., Estep, C.M., Wokosin, D.L., Traynelis, S., Surmeier, D.J., Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. Elife, 6, 2017, 10.7554/eLife.30352.
Giros, B., Jaber, M., Jones, S.R., Wightman, R.M., Caron, M.G., Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379 (1996), 606–612, 10.1038/379606a0.
Gonon, F., Bloch, B., Kinetics and geometry of the excitatory dopaminergic transmission in the rat striatum in vivo. Adv. Pharmacol. 42 (1998), 140–144, 10.1016/s1054-3589(08)60715-2.
Grace, A.A., Bunney, B.S., The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4 (1984), 2877–2890, 10.1523/jneurosci.04-11-02877.1984.
Guzman, J.N., Sánchez-Padilla, J., Chan, C.S., Surmeier, D.J., Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29 (2009), 11011–11019, 10.1523/JNEUROSCI.2519-09.2009.
Held, K., Voets, T., Vriens, J., Signature and pathophysiology of non-canonical pores in voltage-dependent cation channels. Rev. Physiol. Biochem. Pharmacol. 170 (2016), 67–99, 10.1007/112_2015_5003.
Hong, L., Pathak, M.M., Kim, I.H., Ta, D., Tombola, F., Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains. Neuron 77 (2013), 274–287, 10.1016/j.neuron.2012.11.013.
Huang, H., Tan, B.Z., Shen, Y., Tao, J., Jiang, F., Sung, Y.Y., Ng, C.K., Raida, M., Köhr, G., Higuchi, M., Fatemi-Shariatpanahi, H., Harden, B., Yue, D.T., Soong, T.W., RNA editing of the IQ domain in Cav1.3 channels modulates their Ca2+-dependent inactivation. Neuron 73 (2012), 304–316, 10.1016/j.neuron.2011.11.022.
Jiang, D., Gamal el-Din, Tamer M., Ing, C., Lu, P., Pomès, R., Zheng, N., Catterall, W.A., Structural basis for gating pore current in periodic paralysis. Nature 557 (2018), 590–594, 10.1038/s41586-018-0120-4.
Johnson, S.W., Seutin, V., North, R.A., Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258 (1992), 665–667, 10.1126/science.1329209.
Khalili-Araghi, F., Tajkhorshid, E., Roux, B., Schulten, K., Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains. Biophys. J. 102 (2012), 258–267, 10.1016/j.bpj.2011.10.057.
Khaliq, Z.M., Bean, B.P., Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J. Neurosci. 30 (2010), 7401–7413, 10.1523/jneurosci.0143-10.2010.
Khaliq, Z.M., Bean, B.P., Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons. J. Neurosci. 28 (2008), 10905–10917, 10.1523/jneurosci.2237-08.2008.
Lammel, S., Hetzel, A., Häckel, O., Jones, I., Liss, B., Roeper, J., Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine System. Neuron 57 (2008), 760–773, 10.1016/j.neuron.2008.01.022.
Liss, B., Roeper, J., Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brain Res. Rev. 58 (2008), 314–321, 10.1016/j.brainresrev.2007.10.004.
Lu, B., Su, Y., Das, S., Wang, H., Wang, Y., Liu, J., Ren, D., Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 457 (2009), 741–744, 10.1038/nature07579.
Lu, B., Zhang, Q., Wang, H., Wang, Y., Nakayama, M., Ren, D., Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron 68 (2010), 488–499, 10.1016/j.neuron.2010.09.014.
Mason, E.R., Wu, F., Patel, R.R., Xiao, Y., Cannon, S.C., Cummins, T.R., Resurgent and gating pore currents induced by De Novo SCN2A epilepsy mutations. eNeuro 6 (2019), 1–17, 10.1523/ENEURO.0141-19.2019.
Mercuri, N.B., Bond, A., Calabresi, P., Stratta, F., Stefani, A., Bernardi, G., Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br. J. Pharmacol. 113 (1994), 831–838, 10.1111/j.1476-5381.1994.tb17068.x.
Meyrath, M., Szpakowska, M., Zeiner, J., Massotte, L., Merz, M.P., Benkel, T., Simon, K., Ohnmacht, J., Turner, J.D., Krüger, R., Seutin, V., Ollert, M., Kostenis, E., Chevigné, A., The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nat. Commun. 11 (2020), 1–16, 10.1038/s41467-020-16664-0.
Moreau, A., Gosselin-Badaroudine, P., Chahine, M., Molecular biology and biophysical properties of ion channel gating pores. Q. Rev. Biophys. 47 (2014), 364–388, 10.1017/S0033583514000109.
Musset, B., Smith, S.M.E., Rajan, S., Morgan, D., Cherny, V.V., Decoursey, T.E., Aspartate 112 is the selectivity filter of the human voltage-gated proton channel. Nature 480 (2011), 273–277, 10.1038/nature10557.
Nedergaard, S., Flatman, J.A., Engberg, I., Nifedipine‐ and omega‐conotoxin‐sensitive Ca2+ conductances in Guinea‐pig substantia nigra pars compacta neurones. J. Physiol. 466 (1993), 727–747, 10.1113/jphysiol.1993.sp019742.
Neuhoff, H., Neu, A., Liss, B., Roeper, J., I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. 22 (2002), 1290–1302, 10.1523/JNEUROSCI.22-04-01290.2002.
Nieoullon, A., Dopamine and the regulation of cognition and attention. Prog. Neurobiol. 67 (2002), 53–83, 10.1016/S0301-0082(02)00011-4.
O'Leary, T., Williams, A.H., Franci, A., Marder, E., Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82 (2014), 809–821, 10.1016/j.neuron.2014.04.002.
Philippart, F., Destreel, G., Merino-Sepúlveda, P., Henny, P., Engel, D., Seutin, V., Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons. J. Neurosci. 36 (2016), 7234–7245, 10.1523/JNEUROSCI.0459-16.2016.
Philippart, F., Khaliq, Z.M., Gi/o protein-coupled receptors in dopamine neurons inhibit the sodium leak channel NALCN. Elife, 7, 2018, 10.7554/eLife.40984.
Poulin, J.-F., Zou, J., Drouin-Ouellet, J. Kim, K.-Y.A., Cicchetti, F., Awatramani, R.B., Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 9 (2014), 930–943, 10.1016/j.celrep.2014.10.008.
Puopolo, M., Raviola, E., Bean, B.P., Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J. Neurosci. 27 (2007), 645–656, 10.1523/JNEUROSCI.4341-06.2007.
Richards, C.D., Shiroyama, T., Kitai, S.T., Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 80 (1997), 545–557, 10.1016/S0306-4522(97)00093-6.
Schultz, W., Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30 (2007), 259–288, 10.1146/annurev.neuro.28.061604.135722.
Seutin, V., Engel, D., Differences in Na+ conductance density and Na+ channel functional properties between dopamine and GABA neurons of the rat substantia nigra. J. Neurophysiol. 103 (2010), 3099–3114, 10.1152/jn.00513.2009.
Seutin, V., Massotte, L., Renette, M.F., Dresse, A., Evidence for a modulatory role of Ih on the firing of a subgroup of midbrain dopamine neurons. Neuroreport 12 (2001), 255–258, 10.1097/00001756-200102120-00015.
Seutin, V., Verbanck, P., Massotte, L., Dresse, A., Galanin decreases the activity of locus coeruleus neurons in vitro. Eur. J. Pharmacol. 164 (1989), 373–376, 10.1016/0014-2999(89)90481-0.
Sokolov, S., Scheuer, T., Catterall, W.A., Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. J. Gen. Physiol. 136 (2010), 225–236, 10.1085/jgp.201010414.
Sokolov, S., Scheuer, T., Catterall, W.A., Gating pore current in an inherited ion channelopathy. Nature 446 (2007), 76–78, 10.1038/nature05598.
Sokolov, S., Scheuer, T., Catterall, W.A., Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47 (2005), 183–189, 10.1016/J.NEURON.2005.06.012.
Sonders, M.S., Zhu, S.J., Zahniser, N.R., Kavanaugh, M.P., Amara, S.G., Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17 (1997), 960–974, 10.1523/JNEUROSCI.17-03-00960.1997.
Starace, D.M., Bezanilla, F., A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427 (2004), 548–553, 10.1038/nature02270.
Sun, Y., Zhang, X.H., Selvaraj, S., Sukumaran, P., Lei, S., Birnbaumer, L., Brij, X., Singh, B., Inhibition of L-type Ca 2 channels by TRPC1-STIM1 complex is essential for the protection of dopaminergic neurons. J. Neurosci. 37 (2017), 3364–3377, 10.1523/JNEUROSCI.3010-16.2017.
Tarfa, R.A., Evans, R.C., Khaliq, Z.M., Enhanced sensitivity to hyperpolarizing inhibition in mesoaccumbal relative to nigrostriatal dopamine neuron subpopulations. J. Neurosci. 37 (2017), 3311–3330, 10.1523/JNEUROSCI.2969-16.2017.
Tepper, J.M., Damlama, M., Trent, F., Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons. Neuroscience 60 (1994), 469–477, 10.1016/0306-4522(94)90258-5.
Tombola, F., Pathak, M.M., Isacoff, E.Y., Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45 (2005), 379–388, 10.1016/j.neuron.2004.12.047.
Xie, L., Gao, S., Alcaire, S.M., Aoyagi, K., Wang, Y., Griffin, J.K., Stagljar, I., Nagamatsu, S., Zhen, M., NLF-1 delivers a sodium leak channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron 77 (2013), 1069–1082, 10.1016/j.neuron.2013.01.018.
Yeh, E., Ng, S., Zhang, M., Bouhours, M., Wang, Y., Wang, M., Hung, W., Aoyagi, K., Melnik-Martinez, K., Li, M., Liu, F., Schafer, W.R., Zhen, M., A putative cation channel, NCA-1, and a novel protein, UNC-80, transmit neuronal activity in C. elegans. PLoS Biol., 6, 2008, e55, 10.1371/journal.pbio.0060055.