Article (Scientific journals)
Ribosome exit tunnel electrostatics
Joiret, Marc; Kerff, Frédéric; Rapino, Francesca et al.
2022In Physical Review. E, 105 (1), p. 014409-1 - 014409-43
Peer Reviewed verified by ORBi
 

Files


Full Text
PhysRevE.105.014409.pdf
Publisher postprint (5.41 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Ribosome; Biophysics; x-ray crystallography; electrostatic interaction; force sensing; TASEP; co-translational protein folding; RNA-protein interaction; optical tweezers
Abstract :
[en] The impact of ribosome exit tunnel electrostatics on the protein elongation rate or on forces acting upon the nascent polypeptide chain are currently not fully elucidated. In the past, researchers have measured the electrostatic potential inside the ribosome polypeptide exit tunnel at a limited number of spatial points, at least in rabbit reticulocytes. Here we present a basic electrostatic model of the exit tunnel of the ribosome, providing a quantitative physical description of the tunnel interaction with the nascent proteins at all centro-axial points inside the tunnel. We show that a strong electrostatic screening is due to water molecules (not mobile ions) attracted to the ribosomal nucleic acid phosphate moieties buried in the immediate vicinity of the tunnel wall. We also show how the tunnel wall components and local ribosomal protein protrusions impact on the electrostatic potential profile and impede charged amino acid residues from progressing through the tunnel, affecting the elongation rate in a range of −40% to +85% when compared to the average elongation rate. The time spent by the ribosome to decode the genetic encrypted message is constrained accordingly. We quantitatively derive, at single-residue resolution, the axial forces acting on the nascent peptide from its particular sequence embedded in the tunnel. The model sheds light on how the experimental data point measurements of the potential are linked to the local structural chemistry of the inner wall, shape, and size of the tunnel. The model consistently connects experimental observations coming from different fields in molecular biology, x-ray crystallography, physical chemistry, biomechanics, and synthetic and multiomics biology. Our model should be a valuable tool to gain insight into protein synthesis dynamics, translational control, and the role of the ribosome's mechanochemistry in the cotranslational protein folding.
Research Center/Unit :
GIGA-in silico medicine, BIOMECH Research Unit
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Joiret, Marc  ;  Université de Liège - ULiège > GIGA In silico medecine - Biomechanics Research Unit
Kerff, Frédéric  ;  Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Rapino, Francesca  ;  Université de Liège - ULiège > GIGA Stem Cells - Cancer Signaling
Close, Pierre  ;  Université de Liège - ULiège > GIGA Stem Cells - Cancer Signaling
Geris, Liesbet  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Language :
English
Title :
Ribosome exit tunnel electrostatics
Alternative titles :
[en] Belgium
Publication date :
13 January 2022
Journal title :
Physical Review. E
ISSN :
2470-0045
eISSN :
2470-0053
Publisher :
American Physical Society
Volume :
105
Issue :
1
Pages :
014409-1 - 014409-43
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
FNRS-FWO EOS Grant No. 30480119 (Join-t-against-Osteoarthritis); WELBIO CR2017S02 (THERAtRAME);ERC grant agreement n°772418 (INSITE)
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 13 January 2022

Statistics


Number of views
304 (25 by ULiège)
Number of downloads
455 (11 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
5
OpenCitations
 
0
OpenAlex citations
 
13

Bibliography


Similar publications



Contact ORBi