Influence of temperature on the creep behaviour by macroindentation of Cocos nucifera shells and Canarium schweinfurthii cores (bio-shellnut wastes in Cameroon)
Ganou Koungang, Bernard Morino; Ndapeu, Dieunedort; Tchuindjang, Jérôme Tchoufacket al.
2020 • In Materials Research Express, 7 (10), p. 14
[en] The aim of this study was to show how temperature modifies the mechanical characteristics of the Cocos nucifera (CN) shells and the Canarium schweinfurthii (CS) cores. The test consisted in performing an instrumented macroindentation on prismatic specimens in an adiabatic chamber; the indentation carried out according to four temperature ranges (30 °C, 50 °C, 70 °C, 90 °C). The Oliver and Pharr method is used for the analysis of mechanical parameters in indentation: reduced Young's modulus, hardness, creep coefficient. These parameters have enabled to estimate indirect characteristics such as toughness and ultimate mechanical stress to be obtained. The creep data are simulated to have the rheological model to these materials by considering the statistical criteria. As a global observation, when the temperature increases, the mechanical parameters decrease; although CN is more sensitive to the temperature gradient than CS, these 2 materials show performances that allow them to be classified as engineering polymer materials according to the Ashby diagram.
Tchuindjang, Jérôme Tchoufack ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Metallic materials for additive manufacturing
Wenga Ntcheping, Bernard
Tchemou, Gilbert
Bistac, Sophie
Njeugna, Ebénézer
Courard, Luc ; Université de Liège - ULiège > Département ArGEnCo > Matériaux de construction non métalliques du génie civil
Language :
English
Title :
Influence of temperature on the creep behaviour by macroindentation of Cocos nucifera shells and Canarium schweinfurthii cores (bio-shellnut wastes in Cameroon)
Publication date :
14 October 2020
Journal title :
Materials Research Express
eISSN :
2053-1591
Publisher :
IOP (Institute Of Physics) science, Bristol, United Kingdom
Vinod, A, Sanjay, M R, Siengchin, S, Jyotishkumar, P, Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites (2020) J. Clean. Prod, 258, p. 120978
Alharbi, M A H, Hirai, S, Tuan, H A, Akioka, S, Shoji, W, Effects of chemical composition, mild alkaline pretreatment and particle size on mechanical, thermal, and structural properties of binderless lignocellulosic biopolymers prepared by hot-pressing raw microfibrillated Phoenix dactylifera and Cocos nucifera (2020) Polym. Test, 84, p. 106384
Flores-Johnson, E A, Carrillo, J G, Zhai, C, Gamboa, R A, Gan, Y, Shen, L, Microstructure and mechanical properties of hard Acrocomia mexicana fruit shell (2018) Sci. Rep, 8, pp. 1-12
Dirisu, J O, Fayomi, O S I, Oyedepo, S O, Akinlabi, E T, A preliminary study on chemical and physical properties of coconut shell powder as an enhancer in building ceilings for construction industry: a mini review (2019) IOP Conf. Ser.: Mater. Sci. Eng, 640, p. 12063
Nadzri, S N I H A, A comprehensive review of coconut shell powder composites: preparation, processing, and characterization (2020) J. Thermoplast. Compos. Mater, pp. 1-240892705720930808. , press
Senthilkumar, K, Chandrasekar, M, Rajini, N, Siengchin, S, Rajulu, V, Characterization, thermal and dynamic mechanical properties of poly(propylene carbonate) lignocellulosic Cocos nucifera shell particulate biocomposites (2019) Mater. Res. Express, 6, p. 96426
Mittal, M, Chaudhary, R, Biodegradability and mechanical properties of pineapple leaf/coir Fiber reinforced hybrid epoxy composites (2019) Mater. Res. Express, 6, p. 45301
Jaya prithika, A, Sekar, S K, Mechanical and fracture characteristics of Eco-friendly concrete produced using coconut shell, ground granulated blast furnace slag and manufactured sand (2016) Constr. Build. Mater, 103, pp. 1-7
Lecompte, T, Perrot, A, Subrianto, A, Le Duigou, A, Ausias, G, A novel pull-out device used to study the influence of pressure during processing of cement-based material reinforced with coir (2015) Constr. Build. Mater, 78, pp. 224-233
Ali, M, Liu, A, Sou, H, Chouw, N, Mechanical and dynamic properties of coconut fibre reinforced concrete (2012) Constr. Build. Mater, 30, pp. 814-825
Mittal, M, Chaudhary, R, Experimental investigation on the mechanical properties and water absorption behavior of randomly oriented short pineapple/coir fiber-reinforced hybrid epoxy composites (2018) Mater. Res. Express, 6, p. 15313
Faria, D L, Physical and mechanical properties of polyurethane thermoset matrices reinforced with green coconut fibres (2020) J. Compos. Mater, pp. 1-120021998320940023. , press
Srivaro, S, Tomad, J, Shi, J, Cai, J, Characterization of coconut (Cocos nucifera) trunk’s properties and evaluation of its suitability to be used as raw material for cross laminated timber production (2020) Constr. Build. Mater, 254, p. 119291
Lai, C Y, Sapuan, S M, Ahmad, M, Yahya, N, Dahlan, K Z H M, Mechanical and electrical properties of coconut coir fiber-reinforced polypropylene composites (2005) Polym. Plast. Technol. Eng, 44, pp. 619-632
Robert, U W, Etuk, S E, Umoren, G P, Agbasi, O E, Assessment of thermal and mechanical properties of composite board produced from coconut (cocos nucifera) husks, waste newspapers, and cassava starch (2019) Int. J. Thermophys, 40, p. 83
Naveen, J, Jawaid, M, Zainudin, E, Sultan, M, Yahaya, R, Enhanced thermal and dynamic mechanical properties of synthetic/ natural hybrid composites with graphene nanoplateletes (2019) Polymers (Basel), 11, p. 1085
Naveen, J, Jawaid, M, Zainudin, E S, Sultan, M, Yahaya, R, Mechanical and moisture diffusion behaviour of hybrid Kevlar/Cocos nucifera sheath reinforced epoxy composites (2019) J. Mater. Res. Technol, 8, pp. 1308-1318
Marceau, S, Caré, S, Lesage, P, (2016) Synthèse de l’opération de recherche stratégique et incitative Matériaux Biosourcés Et Naturels Pour Une Construction Durable (Mabionat)
Lagel, M-C, (2015) Développement de Nouveaux Matériaux à Base de Polymères Naturels et Leurs Applications, , (Lorraine: Université de Lorraine)
Winters, R F, (1969) Newer Engineering Materials: A Symposium on Recent Developments in New Materials for Use in Engineering, , (London: MacMillan)
Callister, W D, Rethwisch, D G, (2011) Materials Science and Engineering 5th edn, , (New York: wiley)
Murr, L E, (2015) Handbook of Materials Structures, Properties, Processing and Performance, , (Switzerland: Springer)
Hiloidhari, M, Agroindustry Wastes: Biofuels and Biomaterials Feedstocks for Sustainable Rural Development (2020) Refining Biomass Residues for Sustainable Energy and Bioproducts, pp. 357-388. , (Amsterdam: Elsevier)
Gogoi, D, (2014) Valorization of Bio-Waste for Biofuel and Biomaterials, , (Tezpur: Tezpur University)
Bontempi, E, A new Approach to Evaluate the Sustainability of Raw Materials Substitution (2017) Raw Materials Substitution Sustainability, pp. 79-101. , (Berlin: Springer)
Henstock, M E, The impacts of materials substitution on the recyclability of automobiles (1988) Resour. Conserv. Recycl, 2, pp. 69-85
Chen, M, Blanc, D, Gautier, M, Mehu, J, Gourdon, R, Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction (2013) Waste Manag, 33, pp. 1268-1275
(2006) Annual Report CIRAD 2006: Growing Crops in Town A Response to Urbanization, , CIRAD (Paris: CIRAD)
Ndapeu, D, Elaboration and characterization of a composite material based on canarium schweinfurthii engl cores with a polyester matrix (2020) Mater. Sci. Appl, 11, pp. 204-215
Fathi, L, Frühwald, A, The role of vascular bundles on the mechanical properties of coconut palm wood (2014) Wood Mater. Sci. Eng, 9, pp. 214-223
Rana, M N, Das, A K, Ashaduzzaman, M, Physical and mechanical properties of coconut palm (Cocos nucifera) stem Bangladesh (2015) J. Sci. Ind. Res, 50, pp. 39-46
Niklas, K J, Spatz, H-C, Worldwide correlations of mechanical properties and green wood density (2010) Am. J. Bot, 97, pp. 1587-1594
Monteiro, S N, Terrones, L A H, D’Almeida, J R M, Mechanical performance of coir fiber/polyester composites (2008) Polym. Test, 27, pp. 591-595
Rahman, M M, Khan, M A, Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties (2007) Compos. Sci. Technol, 67, pp. 2369-2376
Ze, E P, Elaboration and characterization of composite materials reinforced by papaya trunk fibers (carica papaya) and particles of the hulls of the kernels of the winged fruits (canarium schweinfurthii) with polyester matrix (2020) J. Miner. Mater. Charact. Eng, pp. 341-352. , 08
Srinivasababu, N, Mechanical behavior of arbitrarily reinforced cocos nucifera leaf sheath fibre reinforced polyester composites—comparison with other coconut FRP composites (2017) Mater. Today Proc, 4, pp. 9612-9615
Apasi, A, Yawas, D S, Abdulkareem, S, Kolawole, M Y, Improving mechanical properties of aluminium alloy through addition of coconut shell-ash (2016) J. Sci. Technol, 36, pp. 34-43
Gludovatz, B, Walsh, F, Zimmermann, E A, Naleway, S E, Ritchie, R O, Kruzic, J J, Multiscale structure and damage tolerance of coconut shells (2017) J. Mech. Behav. Biomed. Mater, 76, pp. 76-84
Ndapeu, D, Demze Nitidem, A, Sikame Tagne, N R, Ganou Koungang, B M, Defo, N, Njeugna, E, Characterization of a brake lining composite based on aiele fruit cores (Canarium schweinfurthii) and palm kernel fibers (elaeis guineensis) with a urea-formaldehyde matrix (2020) Int. J. Sci. Eng. Res, 11, pp. 1110-1117. , http://www.ijser.org/onlineResearchPaperViewer.aspx?CHARACTERIZATION-OF-A-BRAKE-LINING-COMPOSITE-BASED-ON-AIELE-FRUIT-CORES-CANARIUMSCHWEINFURTHII-AND-PALM-KERNEL-FIBERS.pdf
Ehiem, J C, Ndirika, V I O, Onwuka, U N, Raghavan, V, The moisture-dependent flow characteristics of canarium schweinfurthii engler nuts (2019) Res. Agric. Eng, 65, pp. 40-47
Schmier, S, Hosoda, N, Speck, T, Hierarchical structure of the cocos nucifera (coconut) endocarp: functional morphology and its influence on fracture toughness (2020) Molecules, 25, p. 223
Shen, J, Flores, M, Sharits, A, Impact performance of a plate structure with coconut-inspired microchannels (2020) Appl. Sci, 10, p. 355
Vidil, L, Potiron, C O, Bilba, K, Arsène, M-A, Characterization of a new native plant textile, leaf sheath from cocos nucifera l., as potential reinforcement of polymer composites (2020) Ann. Agric. Crop Sci, 5, p. 1056
Brebbia, C A, Klemm, A, (2013) Materials Characterisation VI: Computational Methods and Experiments, 77, p. 364. , (Ashurst: WIT Press)
Flewitt, P E J, Wild, R K, (2017) Physical Methods for Materials Characterisation, , (Boca Raton, FL: CRC Press)
Sakai, M, (2008) Principles and applications of indentation micro and nano mechanical testing of materials and devices, pp. 1-47. , ed F Yang and J C M Li (Switzerland: Springer Science+Business Media, LLC)
Ganou Koungang, B M, Ndapeu, D, Tchemou, G, Njeugna, E, Courard, L, (2019) Comportement Hydromécanique des BTC Avec Granulats de Canarium Schweinfurthii et Cocos Nucifera: Analyse de Durabilité Colloque International des 4Oaires de l’Enset de Douala, , http://hdl.handle.net/2268/243539, (Douala, 04-12-2019 to 07-12-2019) (Marseille: Raiffet) 10
William, D G R, Callister, D, William, J, Callister, D, Rethwisch, D G, Materials science and engineering An Introduction (2010) Mater. Sci. Eng. an Introd, 1, p. 885
Njeugna, E, Ganou, M B K, Ndapeu, D, Foba, J N T, Sikame, N R T, Huisken, P W M, An instrumented macro-indentation method for determining the mechanical properties of coconut shell (coco nucifera of cameroon) (2016) Mech. Mater. Sci. Eng. J, 5, p. 8. , https://hal.archives-ouvertes.fr/hal-01367491
Dos Reis, J M L, Effect of temperature on the mechanical properties of polymer mortars (2012) Mater. Res, 15, pp. 645-649
Plaseied, A, Fatemi, A, Strain rate and temperature effects on tensile properties and their representation in deformation modeling of vinyl ester polymer (2008) Int. J. Polym. Mater. Polym. Biomater, 57, pp. 463-479
Njeugna, E, Ndapeu, D, Bistac, S, Foba, J, Fogue, M, Contribution to the characterisation of the coconut shells (coco nucifera) of cameroon (2013) Int. J. Mech. Struct, 4, pp. 1-22. , http://www.irphouse.com/ijms/ijmsv4n1_01.pdf
Oliver, W, Pharr, G M, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments (1992) J. Mater. Res, 7, pp. 1564-1583
Chudoba, T, Jennett, N M, Higher accuracy analysis of instrumented indentation data obtained with pointed indenters (2008) J. Phys. D: Appl. Phys, 41, p. 215407
Oliver, W, Pharr, G M, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology (2004) J. Mater. Res, 19, pp. 3-20
Herbert, E G, Pharr, G M, Oliver, W C, Lucas, B N, Hay, J L, On the measurement of stress-strain curves by spherical indentation (2001) Thin Solid Films 398–399 331–5
Sun, M C, Yang, C, Xiao, S Y, Tan, W, Zhou, G P, Analysis of the mechanical properties of Q345R steel in deep-regulating units by the spherical indentation method (2019) IOP Conf. Ser.: Mater. Sci. Eng, 668, p. 012017
Arizzi, F, Rizzi, E, Elastoplastic parameter identification by simulation of static and dynamic indentation tests Model (2014) Simul. Mater. Sci. Eng, 22, p. 035017
Celentano, D J, Guelorget, B, François, M, Cruchaga, M A, Slimane, A, Numerical simulation and experimental validation of the microindentation test applied to bulk elastoplastic materials Model (2012) Simul. Mater. Sci. Eng, 20, p. 045007
Yoffe, E H, Modified Hertz theory for spherical indentation (1984) Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, 50, pp. 813-828
Oliver, W C, Pharr, G M, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments (1992) J. Mater. Res, 7, pp. 1564-1583
Schapery, R A, Effect of cyclic loading on the temperature in viscoelastic media with variable properties (1964) AIAA J, 2, pp. 827-835
Schapery, R A, A theory of non-linear thermoviscoelasticity based on irreversible thermodynamics 5th U.S (1966) Congress of Applied Mechanics, pp. 511-530
Sikame Tagne, N R, Study of the viscoelastic behaviour of the Raffia vinifera fibres (2018) Ind. Crops Prod, 124, pp. 572-581
Chai, H, Lawn, B R, A universal relation for edge chipping from sharp contacts in brittle materials: a simple means of toughness evaluation (2007) Acta Mater, 55, pp. 2555-2561
Hills, D A, Nowell, D, Barber, J R, KL Johnson and contact mechanics (2017) Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci, 231, pp. 2451-2458
Kaupp, G, Naimi-Jamal, M R, Nutshells’ mechanical response: From nanoindentation and structure to bionics models (2011) J. Mater. Chem, 21, pp. 8389-8390
Okpala, D C, Palm kernel shell as a lightweight aggregate in concrete (1990) Build. Environ, 25, pp. 291-296
Wang, C-H, Mai, Y-W, Deformation and fracture of Macadamia nuts (1994) Int. J. Fract, 69, pp. 67-85
Lucas, P W, Indentation as a technique to assess the mechanical properties of fallback foods (2009) Am. J. Phys. Anthropol, 140, pp. 643-652
Maleki, G, Milani, J, Motamedzadegan, A, Some physical properties of azarbayejani hazelnut and its kernel (2013) Int. J. Food Eng, 9, pp. 135-140