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Abstract
The aimof this studywas to showhow temperaturemodifies themechanical characteristics of the
Cocos nucifera (CN) shells and theCanarium schweinfurthii (CS) cores. The test consisted in
performing an instrumentedmacroindentation on prismatic specimens in an adiabatic chamber; the
indentation carried out according to four temperature ranges (30 °C, 50 °C, 70 °C, 90 °C). TheOliver
and Pharrmethod is used for the analysis ofmechanical parameters in indentation: reduced Young’s
modulus, hardness, creep coefficient. These parameters have enabled to estimate indirect character-
istics such as toughness and ultimatemechanical stress to be obtained. The creep data are simulated to
have the rheologicalmodel to thesematerials by considering the statistical criteria. As a global
observation, when the temperature increases, themechanical parameters decrease; althoughCN is
more sensitive to the temperature gradient thanCS, these 2materials showperformances that allow
them to be classified as engineering polymermaterials according to theAshby diagram.

1. Introduction

Biomaterials are a class ofmaterials comprising biofibres, biopolymers and bio-composites, themain
components of which come from agriculture or the plantworld, as products orwastes [1–5]. Thesematerials
have experienced a boom in recent years, regardingmany issues such as reduction of plastic pollution, recycling,
stiffness, lightweight, low cost, etc. People are seeking to replace syntheticmaterials that have a negative impact
on the environment and life, causing harmful effects on land, sea and air [1, 2, 6], by naturalmaterials that are
biodegradable [2, 6, 7].

Thefield of use of biomaterials is large, including construction industry [1, 4, 5, 8–10], thermal, sound and
electrical insulated components [1, 4–6, 11–15], but also as parts for wear resistance [1] or those exhibiting
improved impact strength [1, 3, 6, 11, 12, 16, 17].Many other applications related to biocomposites have also be
found in the automotivefield [1, 5, 11].

The development of newmaterials [18–20] requires the determination of theirmechanical properties
[21, 22]when considering various scales starting from themacro to nano scale. Natural biomaterials are among
these newmaterials [23, 24], and due to their availability they are increasingly used in industry as secondary
resources that can replace or supplement primary resources [25–27]:Cocos nucifera (CN) shells andCanarium
schweinfurthii (CS) cores are among these bioresources which are available aswaste inCameroon, with an
estimated volume around 2,000 tons [28].
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CNandCS biomaterials can be used alone, such as timber for construction and structural purposes [13,
29–32]. But theirmost extensive use is achievedwith composites, in the forms of reinforcements within amatrix
of either polymer [1, 2, 5–7, 12, 14, 15, 29, 33–36], ceramic [1, 5], metallic [1, 5, 37], or hybrid type
[5, 7, 8, 11, 16, 17].

In the case of CN, several distinct parts of the coconut have already been studied
[1, 2, 6, 11, 13, 15, 30, 31, 33, 34, 36, 38]. CN fibres are reported to exhibit the highest toughness amongst natural
fibres [10]. TheCN shell, including the one transformed into powder, has been added to variousmatrix while
considering distinct preparations [2, 4, 5, 33, 36, 37]. In addition, other parts of the CNplant are sometimes
used, such as leaves [11, 36], trunk or stems [13, 30, 31], and this occurs either as bearingmaterials or as
composites.

When these naturalmaterials are in the formoffibres, surface preparation [1, 6, 7, 9, 12, 14, 34, 36] and/or
physical or chemical pre-treatments [8–10, 16, 17, 34] are needed in order to achieve the best interface with the
matrix and/or an improvementwithin the strength of thefibres.

In the case of CS, technical applications as a compositematerial lead to characterization approaches that are
similar to those alreadymentioned for CN,with the enhancement of the effect of density, thewater absorption
rate, and friction properties [29, 35]. Recent work has focused on producing brake linings by combiningCS
fillers and palm kernelfiberwith urea formaldehyde resin. Hewas interested in the effect of input size and
proportions on composite density and dynamic friction coefficient [39]. Standardmechanical characterization
can also be carried out for parts of CSwhen they are in their natural state, such as strength and stiffness [32] or
strength andmobility for nuts, the humidity level being an important parameter in the latter case [40].

Biomaterials exhibit a hierarchical structure [3, 38, 41–43]with complexmorphologies [1, 3, 30, 38, 41–43],
whichmakes it difficult to achieve complete characterization.

However, characterization is necessary to better understand thematerial’s behaviour, so as to be to identify
or to extend thefield of applications, which choice is set depending on the achieved properties. Such an
approach is highlighted byworks fromSchmier et al [41] andGludovatz et al [38], who both succeed in
identifying themechanisms of crack initiation and toughening related to the anisotropic channel structure, by
establishing themorphological parameters of the hierarchical structure of theCN endocarp. Such results can lay
the basis for transferring those properties into biomimetic technical applications [41]. Similarly, a very recent
study [42] allows establishing a 3Dmodel of the natural and structured compositematerial constituted by
coconut, in the formof aflat structurewith coconut-inspiredmicrochannels. This new approach of numerical
simulation allows understanding the crashworthiness of coconuts.

When used as composites, characterization tests for naturalmaterials are quite easy to perform, such as
tensile, compression, flexural, etc [1–4, 6, 8, 11, 12, 14–17, 35, 36]. Thermophysical properties of composites can
be determinedwith an equal ease [2, 4, 5, 15–17]. In addition, the dynamic behaviour in connectionwith
dedicated applications is sometimes studiedwith composites, especially when impact strength is sought
[1, 6, 11, 16, 17]. Thewayfibres or aggregates have to be prepared prior to their incorporation into composites is
alsowell known frommany years, including their surface preparation to achieve a good interface with thematrix
[1, 7, 12, 14, 33, 36].

For naturalmaterials, themost commonmechanical tests are done under static (traction, compression,
flexural, etc) or dynamicmodes (toughness fracture), either on a single fiber or set offibers, or on the shell
[1, 6, 7, 11, 13, 30, 31, 38, 43], all these features being prompt to exhibit different orientations and a variable age
[38]. Thermophysical properties, density aswell as water absorption of the fibers or aggregates can also be
determined [13, 30, 31, 35, 43].

Several characterization techniques exist [44, 45], including indentation [46]which presents an ideal
compromise in relation to the stresses that are applied to the studiedmaterial.

Characterization by indentation allows several parameters to be determined at the same time: hardness,
Young’smodulus, and creep [6, 7, 11, 12]. However, as reported by Flores-Johnson et al [3], who determine the
hardness of acrocomiamexicana fruit shell, such a technique is seldomused for biomaterials characterization.
The same observation can bemade for creep, which is not often considered for suchmaterials.

The use of thesematerials is carried out under various conditions, taking into account environmental
criteria such as temperature, humidity or acidity, which strongly influence the parameters of the exposed
materials [47, 48].

Inwhat follows, the indentation techniquewill be used to determine the hardness andYoung’smodulus on
bothCNandCS biomaterials. In addition, the creep behavior of bothmaterials will be discussed as a function of
temperature set at 30, 50, 70 and 90 °C respectively, based on the same indentation tests.

2

Mater. Res. Express 7 (2020) 105306 BMGanouKoungang et al



2.Materials andmethods

2.1.Materials
CS andCN are collected as waste in the public squares of the city ofDouala in Cameroon. The cleaning by
washingwithwater of the internal and external surfaces hasmade it possible to eliminate impurities of the
following types: pulp, sludge, sand and fibers. The 10×20×3mm3 for CS and 10×10×3mm3 for CN [49]
samples (figure 1)were obtained by sawing the shell portions and polishing the faces of this portion.

2.2. 2.2Methods
Themechanical characterization in this case is carried out at variable temperature but using an adiabatic heating
module tomaintain a given temperature value around the test sample.

The equipment used byNjeugna, et al [49]wasmodified by adapting the heatingmodule (figure 2).
The experiments are carried out at four temperatures (30 °C, 50 °C, 70 °C, 90 °C)while using a spherical

indenter of diameterΦ6mm.
These temperatures are chosen to remain below the glass temperature (Tg) of polymermaterials [50–52] (Tg

ò [100–130] °C). At a given isotherm and for a progressive increase of the load (from0 up to themaximum load
of 500Nover a constant incremental step of 50N), the displacement of the indenter penetrating the specimen is
recorded by a 1/1000e precision digital sensor. The load-displacement characteristic graph (figure 3(a)) is
obtained by combined reading of the sensor displacement display and the corresponding load value. The test is
quasi-static but fast enough to avoid creep effects during loading.

When themaximum load is reached andmaintained, creep data is recorded over a period of one hour. After
creep (figure 3(b)), this is followed by a progressive unloading of each placedmass, duringwhich the data
corresponding to the removal of the indenter are also recorded.

The analysis of the indentation tests is based on the hypothesis of an elastoplastic load rise, followed by a
purely elastic unloading (figure 4)As far as the analysis and evaluation of the load—unloading curves resulting
from the collection of our data is concerned, it has been carried out in several clearly defined steps using the
method ofOliver and Pharr [53] expressed by the equation (1).
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h h

h h
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Where P is the force; Pm is themaximum force applied; h is the indentation depth at any time; hf is thefinal
indentation depth at discharge; hm is themaximum indentation depth at Pm;m is a constant determined by
means of a least squaresmethod and is a function of the geometry of the indenter: for a spherical indenter such as
in this studym=1 [54–56].

Figure 1. Some samplewith indentmarks: (a)CNat 30 °C, (a)CS at 30 °C, (c)CNat 50 °C, (d)CS at 50 °C, (e)CNat 70 °C, (f)CS at 70
°C, (g)CNat 90 °C, (h)CS at 90 °C.
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Figure 2.Test device.

Figure 3.Model curves: (a) indentation; (b) creep.

Figure 4.Description of the spherical indentation analysis.
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2.2.1. Reduced young’s modulus
The determination of Young’smodulus is based on the assumption that during the unloading curve the removal
of the tip is accompanied by a spring back due to the elasticity of thematerial. Thus the slope of the unloading
curve provides ameasure Young’smodulus [57–59]. Themethod is based on the recovery theory ofHertz [60]. It
provides for themodelling of the unloading slopewith a function that relates the contact area to the reduced
Young’smodulus according to the equation (2):

p
=E

S

A2
. 2r

c

( )

2.2.2. Hardness
Once themethod for the calculation of the contact area is available, it is possible to calculate hardness contactH
[58, 61]. This is done using the formula from equation (3) and the contact areaAc.

=H
P

A
3

c
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2.2.3. Creep ratio
CIT denoted indentation creep ratio is defined by the relative change in depth of corresponding penetration,
according to equation (4).
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when h1 and h2 shown infigure 2(a) are the penetrations recorded at the beginning of creep and at the end of
creep. In addition to the usualmechanical properties of hardness andmodulus of elasticity, the indentation
curve gives access to a lot of other interesting information such as elastic and plastic indentationwork by
measuring the area under the curve as shown in the figure below.

2.2.4. Creep parameters
With regard to the determination of the rheologicalmodel, severalmodels are proposed in the literature. These
models are based on the combination of springs and dampers to represent the viscoelastic behavior of amaterial
by its total deformation ε(t) (equation (5)):

e e e= +t 5P0( ) ( )

The Boltzmann’s superposition principle, applied in the case of linear viscoelasticity, states that the sumof
the deformations resulting from each component of the stress input is the same as the deformation resulting
from the combined stress input, the total deformation can be expressed (equation (6)) by an integral
representation such as:

òe s t
s
t

t= + D -t D t D t
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t
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0
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WithD(t) andΔD(t−τ) being respectively the creep compliance at the time t and in the transient phase andσ0
the constant stress.

For non-linear viscoelasticity, the Schaperymodel is expressed at constant stress using the description of the
irreversibility of thermodynamics for the viscoelasticmaterials subjected to the external loading in single
integral [62, 63].

The total deformation (equation (7)) is expressed by:

e e s s- = + D
s

t t g D g g D
t

a
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⎛
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The parameters to be determined in the case of the study in only case of creep of nonlinear viscoelasticity are: g0
(equation (8)),D0 (equation (9)). The other g1, g2, and aσ are function of recovery and this study is focused only
on the creep. During the various tests considering every isotherm.

2.2.4.1. Initial creep complianceD0

This parameter is obtained as follows:

e e s= = =t g D gwhere 1 80 0 0 0 0 0( ) ( )
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2.2.4.2. Initial parameter of the non-linearity phenomenon g0
The parameter g0 is the one that reflects the non-linearity phenomenon at the beginning of the loadwhen located
in the nonlinear viscoelasticity.

It is independent on time and dependent on the load. It is given by the equation (10):

e s
e
e
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0
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0 0 0 0
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ε fl0 and ε0 are the instantaneous and initial deformations in the linear domain, respectively.

2.2.4.3. Total creep velocity et˙
This parameter is obtained by equation (11).

e
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2.2.4.4. Plastic creep velocity ep˙
This parameter is obtained by equation (12).

e
e e

=
-

t
12p

t ip
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( )

2.2.5. Rheological model
Severalmodels are obtained by combining the basic elements: spring and damper.

The usualmodels (figure 5) [64] are listed in table 1. These expressions will be used to test the numerical data
obtained during creep acquisition. This in order to know themodel that best describes the phenomenon of
indentation creep for CN andCSmaterials.

Figure 5.Representation of the rheologicalmodels: (a) basic springmodel; (b) basic dampingmodel; (c)Maxwellmodel; (d)Kelvin
model; (e)Zenermodel; (f)Burgermodel.

Table 1.Rheologicalmodel.

Models Mathematics

Maxwell e = +s s
h

t t
E0 0

( )

Kelvin e = -s - tt e t1
E1

1
1( ) ( )

Zener e = + -s s - tt e t1
E E0 1

1
1( ) ( )

Burger-4 elements e = + + -s s
h

s - s
tt t e t1

E E0 0 1
1( ) ( )
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2.2.6. Density
The test sample is introduced into the cell of the heliumpycnometer (Micrometrics 1305). This equipment uses
a gas at 140–170 kPa (helium, nitrogen). It is preferablyHelium for a best performance, asHelium is stable with
allmaterials. Density was numerically evaluated by (equation (13)).

r =
m

v
13( )

2.2.7. Toughness
Toughness is assessed by analytical calculation (equation (14)). In general, themechanical stress of amaterial can
be correlated to the hardness of amaterial. The relationship between the average pressure under the indenter, the
modulus, the yield strength of Young and the hardening behaviors were established. The toughness T of
sufficiently hardmaterials can be obtained using equation (14) as described byChai, et al [65].

=T
P

a9.3
14max

1.5
( )

The parameter a can easily be identified infigure (3). It is calculated knowing the depth h.c.

2.2.8. Ultimate strength
Since 1945, Bishop, et al [8] have suggested that the pressure distribution under an indenter can be approximated
by that of a spherical or cylindrical cavity. Relationships betweenmean pressure under the indenter, yield
strength, Young’smodulus and strain-hardening behaviour have been established. For plastic solids with perfect
elasticity, the pressure (P) at which the cavity extension depends on the ratio between Young’smodulus (E) and
yield strength (σy) and the Poisson’s ratio (ν) according to (equation (15))

s n s
= +

-
P E2

3
1 ln

3 1
15

y y

⎛
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⎞
⎠⎟( )

( )

Following this idea, an extension of the spherical cavitywas carried out by Johnson in the early 1970s [66]. He
stressed that the radial placement of thematerial at the elastoplastic limitmust take into account the volume of
material displaced by the indenter during indentation. Recently, besides these theoretical analyses, an empirical
equation is widely used since 1997, the relation between the hardnessH and the elastic limit (equation (16)).

s »
H

2
16( )

It is therefore proven that hardness and ultimate stress are linked by an approximately linear relationshipwith
factors that would depend on the nature of thematerial.

Thus, considering the data in the literature formaterials (acrocomia [3] andmacadamia [67]) of the same
nature as those under study (CNandCS), a proportionality factor of 2.73was correlated linking ultimate stress
to hardness to obtain (equation (17)).

s »
H

Then
2.73

17( )

3. Results and discussion

3.1.Hardness, young’smodulus, creep coefficient and toughness
Figure 6 shows the results ofmacroindentationwith amaximumapplied normal load of 500N for temperature
isotherms of 30, 50, 70 and 90 °ConCNandCS samples. A significant variation is observed on themeasured
mechanical properties (reducedmodulus of elasticity, hardness and indentation toughness) as a function of
temperature. The general trend is the reduction of the above parameters.

There is a higher hardness value for CNandCS than for palmnut shells, hazelnut, and brazil nut (table 2) a
reduced youngmodulus value almost twice as high.On the other hand, formaterials of the same type such as
acrocomia andmacadamia, the values for hardness and youngmodulus aremuch higher than those for CNand
CS. For the Scheelea sp, when the hardness is higher than the hardness of CN andCS; the Young’smodulus is
slightly smaller. Themicrostructure and intergranular arrangement are themain factors influencing these
parameters. It is also important to specify the scale of the test (macro,micro or nano), thematurity of the shells,
the harvesting environment and the climate of the region are very important in the variations often found.
Therefore, conducting an effective comparative analysismeans integrating all these factors or reducing themby
harvesting products from the same area and of the same age. Basically, the analyses carried out here and there
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just provide a classification range and a criterion to help in the decisionmaking process when selectingmaterials
for specific applications.

3.2. Rheology and creep analysis
Figure 7 shows the creep curve of theCS andCN specimens as a function of temperature.With respect to the
evolution of the curves infigure 6, it should be noted that the deformation increases with temperaturewhich is
clearly justified in table 3.

By observing the correlation coefficient (R2) obtained for each rheologicalmodel in table 4, the Burger-4
model and the Zenermodel are showed the best correlation, however, by observing the permanent impressions
after discharge and over time, the Burger-4model is suitable for describing the visco-plasticity of thesematerials.
It shows a correlation trend over all temperature ranges and for bothCNandCS. Thismodel adequately
describes the phenomenon of indentation creep for thesematerials. The parameters of the Burger-4model are
given in table 5 andwould allow an evaluation of the creep-mechanical parameters describing the visco-plasto-
elasticity of thismaterials.

It appears from figure 6 that CN ismore influenced by temperature variation thanCS, which is consistent
with the density values presented by this work and the SEMmicrostructures observed byNjeugna, et al [52].
Indeed, CN is less dense thanCS andCNmicrostructures show embeddedfibers between the grains. Because
fibers aremore temperature sensitive than the grains ofmicrostructures, alsowith a lower density, the
intergranular distances inCNmicrostructures aremore likely to increase with the temperature gradient.
Nevertheless, these results show a high homogeneity of the characteristics of this bio-material. and describe a
linear decreasing trend of the calculated parameters: youngmodulus, hardness, creep coefficient and toughness.

Themechanical results show that theCNandCSmaterials are very hard and tough comparing towood
product.

Indentation analyses showed two distinct regimes, which are an elastic regime and a plastic regimewith
strain-hardening. The elastic phasewas reducedwith increasing temperature ranges. The elastic behaviour is
similar to the friction of themicroparticles during penetration andwhen the temperature increases, the
intergranular bonding energy will become insufficient to the indentation energies to avoidmicrocracking,
indicating the end of the plastic phase. Plastic behaviour can be understood as a combination of energy
absorptionmechanisms, including cell crushing, intergranular bond failure, primarywall failure and cell
tearing.When the sample densifies by crushing the porosities, the dissipation of frictional energy is greater
because the elastic capacity of thematerials is almost completely lost.

It is noted that from an isothermal temperature of 70 °C, themechanical properties are strongly influenced,
this due to the approach of the glass transition zone. This is confirmed by a reduction inmodulus of elasticity,
hardness and toughness by half for CS and almost a quarter for CN.

Figure 8 shows anAshby graph for compressive strength (calculated by its relationship to hardness) as a
function of density and compressive strength for differentmaterials. CN andCSmaterials showhigher

Figure 6.Mechanical results frommacroindentation.
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Table 2. Summary of characterization data for CN andCS and some similarmaterials.

Nature of samples Temp/°C Density Kg/m3 (s.d.)
Hardness/MPa

(s.d.)
Reduced young’smoduls/GPa

(s.d.)
Creep coefficient/Value

(s.d.) Toughness/MPa.m−0.5 (s.d.)
StrengthMPa

(s.d.)

Cocos nucifera (current study) 30 1.49 (0.22) 135.26 (8.11) 4.63 (0.41) 23 (1.38) 6.07 (0.30) 49.95 (4.30)
50 / 115.71 (5.78) 2.78 (0.25) 23.44 (1.40) 3.65 (0.18) 35.34 (3.12)
70 / 97.02 (7.76) 1.89 (0.17) 25 (1.5) 3.13 (0.15) 33.34 (7.75)
90 / 85.79 (3.43) 1.68 (0.15) 32.43 (1.94) 2.36 (0.11) 26.56 (0.30)

Canarium schweinfurthii (current
study)

30 1.46 (0.21) 136.48 (13.64) 4.61 (0.46) 26 (2.86) 6 (0.42) 49.50 (0.30)

50 / 96.57 (9.65) 4.26 (0.42) 26.09 (2.86) 4.91 (0.34) 42.35 (0.30)
70 / 91.11 (9.11) 4.18 (0.41) 28.46 (3.13) 4.02 (0.28) 35.51 (0.30)
90 / 72.56 (7.25) 2.62 (0.26) 28.71 (3.15) 3.14 (0.21) 31.40 (0.30)

Elaeis guineensis (oil palm) 30 1.14a 126.3 (20.6)b 2.46 (1.04)b / / 12.06 (1.98)a

AcrocomiaMexicana (cocoyol) [3] 30 1.25 (0.03) 290 (25) 9.1 (1.28) / / 87.3 (12.2)
Macadamia ternifolia 30 1.27c 180 (30)c 84 (9)c 1.13 (0.12)d 84.3 (9)d

Scheelea sp. 30 271.5 (74.7)b 3.80 (0.99)b 2.77 (1.11)e

Hazelnut 30 1.05f 7.18e 0.194e

Brazil nut 30 7.13e 0.198e

5 [68].
6 [3].
7 [67].
8 [69].
9 [70].
10 [71].

9

M
ater.R

es.E
xpress7

(2020)105306
B
M

G
an
ou

K
ou

n
gan

g
etal



performance compared to other biologicalmaterials such as wood. Their properties allow them to be classified
in the range of syntheticmaterials used as structural fillers in the development of composites.

A comparison of themechanical properties of various fruits and stone shells is presented in table 2. Since
most of the data available for these types of shells come from indentation tests, only Er andHvalues are
presented for all these shells. It is found that theCN andCS core shells have similarmechanical properties to the
other shells.

4. Conclusion

In this study, themechanical characteristics and rheological behaviour of certain by-products of cameroonian
plants (CNandCS)were experimentally determined at different isotherms bymacroindentation. Using a
spherical indenter ofΦ6mmand for loads up to 500N, several tests were carried out on bothmaterials at
isotherms of 30 °C, 50 °C, 70 °Cand 90 °C.TheOliver and Pharrmethod exploited inmacroindentationmade it
possible to determine the reduced Young’smodulus, hardness, creep coefficient, toughness,mechanical
strength and rheologicalmodel of these biomaterials. The results show that, apart from the creep coefficient, all
other characteristics decrease with temperature in thementioned range. Temperature has a great influence on
parameters such as Young’smodulus (its value drops by about 50%between 30 °Cand 90 °C) and toughness (its
value drops by about 60%between 30 °Cand 90 °C). Overall, themechanical characteristics of CN aremore
sensitive to temperature than those of CS. Conversely, the creep coefficient increases slightly with temperature.
Of the four rheologicalmodels tested, the Burger-4 elementsmodel best reflects the behavior of CN andCS. All
its results show that CN andCS can be used as reinforcing elements in compositematerials. This study alsomade
it possible to classify CN andCS according to anAshby diagram in the engineer’s polymer category.

Figure 7.Creep curve function of temperature, (a)CNmaterial; (b)CSmaterial.

Table 3. Summary of creep parameters.

CN CS

Unit 30 °C 50 °C 70 °C 90 °C 30 °C 50 °C 70 °C 90 °C

ε0 mm 0.26 0.29 0.32 0.37 0.20 0.23 0.26 0.31

εt mm 0.31 0.36 0.40 0.49 0.25 0.29 0.33 0.40

εfl0 mm 0.29 0.33 0.37 0.44 0.23 0.27 0.30 0.36

εip mm 0.28 0.32 0.37 0.47 0.21 0.26 0.31 0.38

et (× 10−5) mms−1 9.17 11.33 13.33 20.00 8.67 10.00 12.33 14.83

ep (× 10−5) mms−1 11.60 8.24 7.53 5.05 8.00 8.00 8.32 7.00

D0 (× 10−3) MPa−1.mm 1.79 2.86 3.46 4.58 1.38 1.82 2.31 3.25

g0 1.21 1.23 1.25 1.32 1.26 1.27 1.28 1.29
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Table 4. Simulated rheologicalmodels parameters.

Models
s
E0

s
h

-x 10 5

0

s
E1 t

1

1 R2

Newton CN 30 °C 0.27 8.81 0.939

50 °C 0.31 9.85 0.832

70 °C 0.35 11.22 0.793

90 °C 0.43 13.81 0.643

CS 30 °C 0.21 8.29 0.913

50 °C 0.25 8.03 0.718

70 °C 0.29 9.38 0.692

90 °C 0.357 9.74 0.582

Kelvin CN 30 °C 0.30 6.74 −5.11

50 °C 0.35 0.42 −4.567

70 °C 0.39 8.21 −3.85

90 °C 0.48 10.02 −2.516

CS 30 °C 0.24 7.97 −3.203

50 °C 0.28 0.19 −3.676

70 °C 0.32 0.23 −3.277

90 °C 0.39 9.49 −3.323

Zener CN 30 °C 0.26 0.06 318.70 0.995

50 °C 0.23 0.07 171.80 0.997

70 °C 0.32 0.08 150.00 0.998

90 °C 0.37 0.12 98.17 0.998

CS 30 °C 0.21 0.05 263.40 0.995

50 °C 0.23 0.06 125.30 0.994

70 °C 0.26 0.07 116.40 0.994

90 °C 0.31 0.09 84.57 0.997

Burger 4 CN 30 °C 0.26 1.04 0.05 280.60 0.995

50 °C 0.29 −1.28 0.08 193.90 0.997

70 °C 0.32 −2.24 0.09 179.00 0.998

90 °C 0.37 −1.91 0.13 110.30 0.999

CS 30 °C 0.20 −10.15 0.17 585.80 0.996

50 °C 0.23 −3.88 0.08 180.50 0.998

70 °C 0.26 −3.83 0.09 159.30 0.998

90 °C 0.31 −1.27 0.09 93.95 0.998

Table 5.Calculation of Burger-4 elementsmodel parameters.

Samples T (°C) σ (MPa) E0 (MPa) E1 (MPa) η0 (MPa.s) τ1 (s)

CN 30 °C 144.68 554.35 2562.63 138.98×105 21.38×10−2

50 °C 101.44 349.21 1273.45 79.19×105 30.94×10−2

70 °C 92.44 288.89 951.38 41.32×105 33.51×10−2

90 °C 80.71 217.71 617.94 42.41×105 54.39×10−2

CS 30 °C 144.68 718.41 823.95 14.25×105 10.24×10−2

50 °C 126.50 551.46 1472.69 32.61×105 33.24×10−2

70 °C 112.52 431.79 1155.99 29.41×105 37.66×10−2

90 °C 95.25 309.96 965.15 75.23×105 63.86×10−2
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