LiDAR; Smart Cities; 3D City Model; CityJSON; Point Cloud
Abstract :
[en] Point clouds generated from aerial LiDAR and photogrammetric techniques are great ways to obtain valuable spatial insights over large scale. However, their nature hinders the direct extraction and sharing of underlying information. The generation of consistent large-scale 3D city models from this real-world data is a major challenge. Specifically, the integration in workflows usable by decision-making scenarios demands that the data is structured, rich and exchangeable. CityGML permits new advances in terms of interoperable endeavour to use city models in a collaborative way. Efforts have led to render good-looking digital twins of cities but few of them take into account their potential use in finite elements simulations (wind, floods, heat radiation model, etc.). In this paper, we target the automatic reconstruction of consistent 3D city buildings highlighting closed solids, coherent surface junctions, perfect snapping of vertices, etc. It specifically investigates the topological and geometrical consistency of generated models from aerial LiDAR point cloud, formatted following the CityJSON specifications. These models are then usable to store relevant information and provides geometries usable within complex computations such as computational fluid dynamics, free of local inconsistencies (e.g. holes and unclosed solids).
Research Center/Unit :
Geomatics Unit
Disciplines :
Computer science
Author, co-author :
Nys, Gilles-Antoine ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Billen, Roland ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Poux, Florent ; Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Language :
English
Title :
Automatic 3D Buildings Compact Reconstruction from LiDAR point clouds
Publication date :
12 August 2020
Event name :
XXIV ISPRS Congress
Event organizer :
ISPRS
Event place :
Nice, France
Event date :
from 31-08-2020 to 02-09-2020
Audience :
International
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25-37. https://doi. org/10. 1016/j. compenvurbsys. 2016. 04. 005
Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D City Models: State of the Art Review. ISPRS International Journal of Geo-Information, 4(4), 2842-2889. https://doi. org/10. 3390/ijgi4042842
Billen, R., Cutting-Decelle, A.-F., Marina, O., de Almeida, J.-P., M., C., Falquet, G., Leduc, T., Métral, C., Moreau, G., Perret, J., Rabin, G., San Jose, R., Yatskiv, I., & Zlatanova, S. (2014). 3D City Models and urban information: Current issues and perspectives: European COST Action TU0801. In R. Billen, A.-F. Cutting-Decelle, O. Marina, J.-P. de Almeida, C. M., G. Falquet, T. Leduc, C. Métral, G. Moreau, J. Perret, G. Rabin, R. San Jose, I. Yatskiv, & S. Zlatanova (Eds.), 3D City Models and urban information: Current issues and perspectives-European COST Action TU0801 (pp. I-118). EDP Sciences. https://doi. org/10. 1051/TU0801/201400001
Gröger, G., & Plümer, L. (2012). CityGML-Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12-33. https://doi. org/10. 1016/j. isprsjprs. 2012. 04. 004
Hu, P., Yang, B., Dong, Z., Yuan, P., Huang, R., Fan, H., & Sun, X. (2018). Towards Reconstructing 3D Buildings from ALS Data Based on Gestalt Laws. Remote Sensing, 10(7), 1127. https://doi. org/10. 3390/rs10071127
Kurdi, F. T., Awrangjeb, M., & Liew, A. W.-C. (2019). Automated Building Footprint and 3D Building Model Generation from Lidar Point Cloud Data. 2019 Digital Image Computing: Techniques and Applications (DICTA), 1-8. https://doi. org/10. 1109/DICTA47822. 2019. 8946008
Ledoux, H. (2018). val3dity: Validation of 3D GIS primitives according to the international standards. Open Geospatial Data, Software and Standards, 3(1), 1. https://doi. org/10. 1186/s40965-018-0043-x
Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019). CityJSON: A compact and easy-to-use encoding of the CityGML data model. ArXiv: 1902. 09155 [Cs]. http://arxiv. org/abs/1902. 09155
Liu, X., Zhang, Y., Ling, X., Wan, Y., Liu, L., & Li, Q. (2019). TopoLAP: Topology Recovery for Building Reconstruction by Deducing the Relationships between Linear and Planar Primitives. Remote Sensing, 11(11), 1372. https://doi. org/10. 3390/rs11111372
Poux, F., Neuville, R., Nys, G.-A., & Billen, R. (2018). 3D Point Cloud Semantic Modelling: Integrated Framework for Indoor Spaces and Furniture. Remote Sensing, 10(9), 1412. https://doi. org/10. 3390/rs10091412
Schnabel, R., Wahl, R., & Klein, R. (2007). Efficient RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum, 26(2), 214-226. https://doi. org/10. 1111/j. 1467-8659. 2007. 01016. x
Verma, V., Kumar, R., & Hsu, S. (2006). 3D Building Detection and Modeling from Aerial LIDAR Data. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Volume 2 (CVPR'06), 2, 2213-2220. https://doi. org/10. 1109/CVPR. 2006. 12
Wang, R., Peethambaran, J., & Chen, D. (2018). LiDAR Point Clouds to 3D Urban Models: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 606-627. https://doi. org/10. 1109/JSTARS. 2017. 2781132
Wichmann, A. (2018). Grammar-guided reconstruction of semantic 3D building models from airborne LiDAR data using half-space modeling. https://doi. org/10. 14279/DEPOSITONCE-6803
Xiong, B., Jancosek, M., Oude Elberink, S., & Vosselman, G. (2015). Flexible building primitives for 3D building modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 275-290. https://doi. org/10. 1016/j. isprsjprs. 2015. 01. 002
Zhao, Z., Ledoux, H., & Stoter, J. (2013). AUTOMATIC REPAIR OF CITYGML LOD2 BUILDINGS USING SHRINK-WRAPPING. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-2/W1, 309-317. https://doi. org/10. 5194/isprsannals-II-2-W1-309-2013
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.