Article (Scientific journals)
CityJSON Building Generation from Airborne LiDAR 3D Point Clouds
Nys, Gilles-Antoine; Poux, Florent; Billen, Roland
2020In ISPRS International Journal of Geo-Information, 9 (521)
Peer Reviewed verified by ORBi
 

Files


Full Text
ijgi-09-00521.pdf
Publisher postprint (1.5 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
LiDAR; 3D city models; CityJSON; Smart Cities; Point Cloud; Segmentation; 3D Modeling
Abstract :
[en] The relevant insights provided by 3D City models greatly improve Smart Cities and their management policies. In the urban built environment, buildings frequently represent the most studied and modeled features. CityJSON format proposes a lightweight and developer-friendly alternative to CityGML. This paper proposes an improvement to the usability of 3D models providing an automatic generation method in CityJSON, to ensure compactness, expressivity, and interoperability. In addition to a compliance rate in excess of 92% for geometry and topology, the generated model allows the handling of contextual information, such as metadata and refined levels of details (LoD), in a built-in manner. By breaking down the building-generation process, it creates consistent building objects from the unique source of Light Detection and Ranging (LiDAR) point clouds.
Research Center/Unit :
Geomatics Unit
Disciplines :
Computer science
Author, co-author :
Nys, Gilles-Antoine  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Poux, Florent  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Language :
English
Title :
CityJSON Building Generation from Airborne LiDAR 3D Point Clouds
Publication date :
31 August 2020
Journal title :
ISPRS International Journal of Geo-Information
eISSN :
2220-9964
Publisher :
MDPI AG, Basel, Switzerland
Special issue title :
Automatic Feature Recognition from Point Clouds
Volume :
9
Issue :
521
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 01 September 2020

Statistics


Number of views
135 (20 by ULiège)
Number of downloads
189 (18 by ULiège)

Scopus citations®
 
41
Scopus citations®
without self-citations
36
OpenCitations
 
16
OpenAlex citations
 
42

Bibliography


Similar publications



Contact ORBi