[en] Biofilms are a permanent source of contamination in food industries and could harbor various types of microorganisms, such as spoiling bacteria. New strategies, such as enzymatic cleaning, have been proposed to eradicate them. The purpose of this study was to evaluate the impact of enzymatic cleaning on the microbial flora of installations in a processing food industry and of the final food product throughout its shelf life. A total of 189 samples were analyzed by classical microbiology and 16S rDNA metagenetics, including surface samples, cleaning-in-place (CIP) systems, and food products (at D0, Dend of the shelf life, and Dend of the shelf lifeC7 days). Some surfaces were highly contaminated with spoiling bacteria during conventional cleaning while the concentration of the total flora decreased during enzymatic cleaning. Although the closed circuits were cleaned with conventional cleaning before enzymatic cleaning, there was a significant release of microorganisms from some parts of the installations during enzymatic treatment. A significant difference in the total flora in the food products at the beginning of the shelf life was observed during enzymatic cleaning compared
to the conventional cleaning, with a reduction of up to 2 log CFU/g. Metagenetic analysis of the food samples at the end of their shelf life showed significant differences in bacterial flora between conventional and enzymatic cleaning, with a decrease of spoiling bacteria (Leuconostoc sp.). Enzymatic cleaning has improved the hygiene of the food processing instillations and the microbial quality of the food throughout the shelf life. Although enzymatic cleaning is not yet commonly used in the food industry, it should be considered in combination with conventional sanitizing methods to improve plant hygiene.
Disciplines :
Food science
Author, co-author :
Delhalle, Laurent ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Taminiau, Bernard ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Fastrez, Sébastien; Realco sa
Fall, Abdoulaye; Genalyze sa
Ballesteros, Marina; Realco sa
Burteau, Sophie; Genalyze sa
Daube, Georges ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Language :
English
Title :
Evaluation of enzymatic cleaning on food processing installations and food products bacterial microflora
Publication date :
11 August 2020
Journal title :
Frontiers in Microbiology
eISSN :
1664-302X
Publisher :
Frontiers, Lausanne, Switzerland
Volume :
11
Pages :
1827
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Biofdilm Expert
Funders :
Service public de Wallonie. Secrétariat général - SPW-SG
Abdallah M., Benoliel C., Drider D., Dhulster P., Chihib N.-E., (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch. Microbiol. 196 453–472. 10.1007/s00203-014-0983-1 24744186
Adator E. H., Cheng M., Holley R., McAllister T., Narvaez-Bravo C., (2018). Ability of Shiga toxigenic Escherichia coli to survive within dry-surface biofilms and transfer to fresh lettuce. Int. J. Food Microbiol. 269 52–59. 10.1016/j.ijfoodmicro.2018.01.014 29421358
André S., Vallaeys T., Planchon S., (2017). Spore-forming bacteria responsible for food spoilage. Res. Microbiol. 168 379–387. 10.1016/j.resmic.2016.10.003 27989764
Benson A. K., David J. R. D., Gilbreth S. E., Smith G., Nietfeldt J., Legge R., et al. (2014). Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Appl. Environ. Microbiol. 80 5178–5194. 10.1128/AEM.00774-14 24928886
Bokulich N. A., Mills D. A., (2013). Facility-specific “House” microbiome drives microbial landscapes of artisan cheesemaking plants. Appl. Environ. Microbiol. 79 5214–5223. 10.1128/AEM.00934-13 23793641
Bokulich N. A., Ohta M., Richardson P. M., Mills D. A., (2013). Monitoring seasonal changes in winery-resident microbiota. PLoS One 8:e66437. 10.1371/journal.pone.0066437 23840468
Bremer P. J., Fillery S., McQuillan A. J., (2006). Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int. J. Food Microbiol. 106 254–262. 10.1016/J.IJFOODMICRO.2005.07.004 16216371
Bridier A., Sanchez-Vizuete P., Guilbaud M., Piard J.-C., Naïtali M., Briandet R., (2015). Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 45 167–178. 10.1016/j.fm.2014.04.015 25500382
Carrizosa E., Benito M. J., Ruiz-Moyano S., Hernández A., Villalobos M. D. C., Martín A., et al. (2017). Bacterial communities of fresh goat meat packaged in modified atmosphere. Food Microbiol. 65 57–63. 10.1016/j.fm.2017.01.023 28400020
Cauchie E., Gand M., Kergourlay G., Taminiau B., Delhalle L., Korsak N., et al. (2017). The use of 16S rRNA gene metagenetic monitoring of refrigerated food products for understanding the kinetics of microbial subpopulations at different storage temperatures: the example of white pudding. Int. J. Food Microbiol. 247 70–78. 10.1016/j.ijfoodmicro.2016.10.012 27751567
Celano G., De Angelis M., Minervini F., Gobbetti M., (2016). Different flour microbial communities drive to sourdoughs characterized by diverse bacterial strains and free amino acid profiles. Front. Microbiol. 7:1770. 10.3389/fmicb.2016.01770 27877165
Ceugniez A., Taminiau B., Coucheney F., Jacques P., Delcenserie V., Daube G., et al. (2017). Use of a metagenetic approach to monitor the bacterial microbiota of & quot; Tomme d’Orchies & quot; cheese during the ripening process. Int. J. Food Microbiol. 247 65–69. 10.1016/j.ijfoodmicro.2016.10.034 27817942
Chaillou S., Chaulot-Talmon A., Caekebeke H., Cardinal M., Christieans S., Denis C., et al. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J. 9 1105–1118. 10.1038/ismej.2014.202 25333463
Coughlan L. M., Cotter P. D., Hill C., Alvarez-Ordóñez A., (2016). New weapons to fight old enemies: novel strategies for the (Bio)control of bacterial biofilms in the food industry. Front. Microbiol. 7:1641. 10.3389/fmicb.2016.01641 27803696
Cunault C., Faille C., Calabozo-Delgado A., Benezech T., (2019). Structure and resistance to mechanical stress and enzymatic cleaning of Pseudomonas fluorescens biofilms formed in fresh-cut ready to eat washing tanks. J. Food Eng. 262 154–161. 10.1016/j.jfoodeng.2019.06.006
da Costa Luciano C., Olson N., Tipple A. F. V., Alfa M., (2016). Evaluation of the ability of different detergents and disinfectants to remove and kill organisms in traditional biofilm. Am. J. Infect. Control 44 e243–e249. 10.1016/j.ajic.2016.03.040 27234012
De Angelis M., Minervini F., Siragusa S., Rizzello C. G., Gobbetti M., (2019). Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. Int. J. Food Microbiol. 302 35–46. 10.1016/j.ijfoodmicro.2018.08.009 30177230
De Filippis F., La Storia A., Villani F., Ercolini D., (2013). Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLoS One 8:e70222. 10.1371/journal.pone.0070222 23936168
Delcenserie V., Taminiau B., Delhalle L., Nezer C., Doyen P., Crevecoeur S., et al. (2014). Microbiota characterization of a belgian protected designation of origin cheese. Herve cheese, using metagenomic analysis. J. Dairy Sci. 97 6046–6056. 10.3168/jds.2014-8225 25064656
Delhalle L., Korsak N., Taminiau B., Nezer C., Burteau S., Delcenserie V., et al. (2016). Exploring the bacterial diversity of belgian steak tartare using metagenetics and quantitative real-time PCR analysis. J. Food Prot. 79 220–229. 10.4315/0362-028X.JFP-15-185 26818982
Dinardo F. R., Minervini F., De Angelis M., Gobbetti M., Gänzle M. G., (2019). Dynamics of Enterobacteriaceae and lactobacilli in model sourdoughs are driven by pH and concentrations of sucrose and ferulic acid. LWT 114:108394. 10.1016/j.lwt.2019.108394
Doulgeraki A. I., Ercolini D., Villani F., Nychas G. J. E., (2012). Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 157 130–141. 10.1016/j.ijfoodmicro.2012.05.020 22682877
Elizaquível P., Pérez-Cataluña A., Yépez A., Aristimuño C., Jiménez E., Cocconcelli P. S., et al. (2015). Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina. Int. J. Food Microbiol. 198 9–18. 10.1016/j.ijfoodmicro.2014.12.027 25584777
Ercolini D., Russo F., Nasi A., Ferranti P., Villani F., (2009). Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 75 1990–2001. 10.1128/AEM.02762-08 19201980
Faille C., Bénézech T., Blel W., Ronse A., Ronse G., Clarisse M., et al. (2013). Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures. Food Microbiol. 33 149–157. 10.1016/j.fm.2012.09.010 23200646
Faille C., Bénézech T., Midelet-Bourdin G., Lequette Y., Clarisse M., Ronse G., et al. (2014). Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments. Food Microbiol. 40 64–74. 10.1016/j.fm.2013.12.004 24549199
Fleming D., Rumbaugh K., (2017). Approaches to dispersing medical biofilms. Microorganisms 5:15. 10.3390/microorganisms5020015 28368320
Flint S., Brooks J., Bremer P., Walker K., Hausman E., (2002). The resistance to heat of thermo-resistant streptococci attached to stainless steel in the presence of milk. J. Ind. Microbiol. Biotechnol. 28 134–136. 10.1038/sj.jim.7000229 12074086
Forsythe S., Hayes P. R., (2012). Food hygiene, Microbiology and HACCP, ed. Forsythe S., (Betlin: Springer).
Fougy L., Desmonts M.-H., Coeuret G., Fassel C., Hamon E., Hézard B., et al. (2016). Reducing salt in raw pork sausages increases spoilage and correlates with reduced bacterial diversity. Appl. Environ. Microbiol. 82 3928–3939. 10.1128/AEM.00323-16 27107120
Fox P. F., McSweeney P. L. H., (2017). “Cheese: an overview,” in Cheese: Chemistry, Physics and Microbiology, 4th Edn. (Amsterdam: Academic Press), 5–21.
Gabric D., Galic K., Timmerman H., (2016). “Cleaning of surfaces,” in Handbook of Hygiene Control in the Food Industry, 2nd Edn, (Amsterdam: Woodhead Publishing Ltd), 447–463.
Galié S., García-Gutiérrez C., Miguélez E. M., Villar C. J., Lombó F., (2018). Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9:898. 10.3389/fmicb.2018.00898 29867809
Galimberti A., Bruno A., Mezzasalma V., De Mattia F., Bruni I., Labra M., (2015). Emerging DNA-based technologies to characterize food ecosystems. Food Res. Int. 69 424–433. 10.1016/J.FOODRES.2015.01.017
Ghafir Y., China B., Dierick K., De Zutter L., Daube G., (2008). Hygiene indicator microorganisms for selected pathogens on beef, pork, and poultry meats in Belgium. J. Food Prot. 71 35–45. 10.4315/0362-028x-71.1.35 18236660
Gião M. S., Keevil C. W., (2014). Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microb. Ecol. 67 603–611. 10.1007/s00248-013-0364-3 24452996
Giaouris E., Heir E., Hébraud M., Chorianopoulos N., Langsrud S., Møretrø T., et al. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci. 97 298–309. 10.1016/j.meatsci.2013.05.023 23747091
Giaouris E. E., Simões M. V., (2018). Pathogenic biofilm formation in the food industry and alternative control strategies. Foodborne Dis. 2018 309–377. 10.1016/B978-0-12-811444-5.00011-7
Gibson H., Taylor J. H., Hall K. E., Holah J. T., (1999). Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 87 41–48. 10.1046/j.1365-2672.1999.00790.x 10432586
Gilbert P., Allison D. G., McBain A. J., (2002). Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J. Appl. Microbiol. 92 98S–110S. 10.1046/j.1365-2672.92.5s1.5.x
Greppi A., Ferrocino I., La Storia A., Rantsiou K., Ercolini D., Cocolin L., (2015). Monitoring of the microbiota of fermented sausages by culture independent rRNA-based approaches. Int. J. Food Microbiol. 212 67–75. 10.1016/j.ijfoodmicro.2015.01.016 25724303
Gu G., Ottesen A., Bolten S., Ramachandran P., Reed E., Rideout S., et al. (2018). Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiol. 73 73–84. 10.1016/j.fm.2018.01.002 29526229
Holah J. T., (2013). “Cleaning and disinfection practices in food processing,” in Hygiene in Food Processing: Principles and Practice, 2nd Edn, eds Holah J., White B., Lelieveld H., (Amsterdam: Elsevier Inc), 259–304. 10.1533/9780857098634.3.259
Hutchison M. L., Walters L. D., Avery S. M., Reid C.-A., Wilson D., Howell M., et al. (2005). A comparison of wet-dry swabbing and excision sampling methods for microbiological testing of bovine, porcine, and ovine carcasses at red meat slaughterhouses. J. Food Prot. 68 2155–2162. 10.4315/0362-028x-68.10.2155 16245723
ICMFS (2006). Microorganisms in Foods 6: Microbial Ecology of Food Commodities, 2nd Edn. New York, NY: Kuwer Academic/plenum Publishers.
ICMSF (2012). “Microorganisms in foods 7: microbiological testing in food safety management,” in International Commission for The Microbiological Specifications of Foods, (New York, NY: Springer-Verlag).
ISO (2016). ISO 18593 - Microbiology of the Food Chain - Horizontal Methods for Surface Sampling. Geneva: International Organization for Standardization.
Iulietto M. F., Sechi P., Borgogni E., Cenci-Goga B. T., (2015). Meat spoilage: a critical review of a neglected alteration due to ropy slime producing bacteria. Ital. J. Anim. Sci. 14:4011. 10.4081/ijas.2015.4011
Kaur J., Lee S., Sharma A., Park Y.-S., (2017). DNA profiling of Leuconostoc mesenteroides strains isolated from fermented foods and farm produce in Korea by repetitive-element PCR. Food Sci. Biotechnol. 26 1667–1673. 10.1007/s10068-017-0189-9 30263704
Kembel S. W., Wu M., Eisen J. A., Green J. L., (2012). Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput. Biol. 8:e1002743. 10.1371/journal.pcbi.1002743 23133348
Kim S.-H., Park C., Lee E.-J., Bang W.-S., Kim Y.-J., Kim J.-S., (2017). Biofilm formation of campylobacter strains isolated from raw chickens and its reduction with DNase I treatment. Food Control 71 94–100. 10.1016/J.FOODCONT.2016.06.038
Kumari S., Sarkar P. K., (2014). In vitro model study for biofilm formation by Bacillus cereus in dairy chilling tanks and optimization of clean-in-place (CIP) regimes using response surface methodology. Food Control 36 153–158. 10.1016/J.FOODCONT.2013.08.014
Kumari S., Sarkar P. K., (2016). Bacillus cereus hazard and control in industrial dairy processing environment. Food Control 69 20–29. 10.1016/J.FOODCONT.2016.04.012
Lee M., Song J. H., Jung M. Y., Lee S. H., Chang J. Y., (2017). Large-scale targeted metagenomics analysis of bacterial ecological changes in 88 kimchi samples during fermentation. Food Microbiol. 66 173–183. 10.1016/j.fm.2017.05.002 28576366
Lefebvre E., Vighetto C., Di Martino P., Larreta Garde V., Seyer D., (2016). Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Int. J. Antimicrob. Agents 48 181–188. 10.1016/j.ijantimicag.2016.05.008 27424598
Lelièvre C., Legentilhomme P., Gaucher C., Legrand J., Faille C., Bénézech T., (2002). Cleaning in place: effect of local wall shear stress variation on bacterial removal from stainless steel equipment. Chem. Eng. Sci. 57 1287–1297. 10.1016/S0009-2509(02)00019-2
Lemos L. N., Fulthorpe R. R., Triplett E. W., Roesch L. F. W., (2011). Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 86 42–51. 10.1016/J.MIMET.2011.03.014 21457733
Lequette Y., Boels G., Clarisse M., Faille C., (2010). Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26 421–431. 10.1080/08927011003699535 20198521
Liu X., Tang B., Gu Q., Yu X., (2014). Elimination of the formation of biofilm in industrial pipes using enzyme cleaning technique. MethodsX 1 130–136. 10.1016/j.mex.2014.08.008 26150944
López D., Vlamakis H., Kolter R., (2010). Biofilms. Cold Spring Harb. Perspect. Biol. 2:a000398. 10.1101/cshperspect.a000398 20519345
Louca S., Doebeli M., Parfrey L. W., (2018). Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 6:41. 10.1186/s40168-018-0420-9 29482646
Maillard J. Y., (2016). “Testing the effectiveness of disinfectants and sanitizers,” in Handbook of Hygiene Control in the Food Industry, 2nd Edn, eds Holah J., Mostert M. A., Lelieveld H., (Amsterdam: Elsevier Inc), 569–586. 10.1016/b978-0-08-100155-4.00037-6
Mann E., Wetzels S. U., Pinior B., Metzler-Zebeli B. U., Wagner M., Schmitz-Esser S., (2016). Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs. Meat Sci. 117 36–40. 10.1016/j.meatsci.2016.02.034 26943946
Marchand S., De Block J., De Jonghe V., Coorevits A., Heyndrickx M., Herman L., (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Compr. Rev. Food Sci. Food Saf. 11 133–147. 10.1111/j.1541-4337.2011.00183.x
Mayo B., Rachid C. T. C. C., Alegría A., Leite A. M. O., Peixoto R. S., Delgado S., (2014). Impact of next generation sequencing techniques in food microbiology. Curr. Genomics 15 293–309. 10.2174/1389202915666140616233211 25132799
Meireles A., Borges A., Giaouris E., Simões M., (2016). The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res. Int. 86 140–146. 10.1016/j.foodres.2016.06.006
Menezes L. A. A., Sardaro M. L. S., Duarte R. T. D., Mazzon R. R., Neviani E., Gatti M., et al. (2020). Sourdough bacterial dynamics revealed by metagenomic analysis in Brazil. Food Microbiol. 85:103302. 10.1016/j.fm.2019.103302 31500708
Nagaraj V., Skillman L., Li D., Xie Z., Ho G., (2017). Control of biofouling by xanthine oxidase on seawater reverse osmosis membranes from a desalination plant: enzyme production and screening of bacterial isolates from the full-scale plant. Lett. Appl. Microbiol. 65 73–81. 10.1111/lam.12747 28418590
Nalbantoglu U., Cakar A., Dogan H., Abaci N., Ustek D., Sayood K., et al. (2014). Metagenomic analysis of the microbial community in kefir grains. Food Microbiol. 41 42–51. 10.1016/j.fm.2014.01.014 24750812
Nychas G. J. E., Skandamis P. N., Tassou C. C., Koutsoumanis K. P., (2008). Meat spoilage during distribution. Meat Sci. 78 77–89. 10.1016/j.meatsci.2007.06.020 22062098
Oulahal N., Martial-Gros A., Bonneau M., Blum L. J., (2007). Removal of meat biofilms from surfaces by ultrasounds combined with enzymes and/or a chelating agent. Innov. Food Sci. Emerg. Technol. 8 192–196. 10.1016/J.IFSET.2006.10.001
Parijs I., Steenackers H. P., (2018). Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms. ISME J. 12 2061–2075. 10.1038/s41396-018-0146-5 29858577
Parks D. H., Tyson G. W., Hugenholtz P., Beiko R. G., (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30 3123–3124. 10.1093/bioinformatics/btu494 25061070
Parlapani F. F., Michailidou S., Anagnostopoulos D. A., Sakellariou A. K., Pasentsis K., Psomopoulos F., et al. (2018). Microbial spoilage investigation of thawed common cuttlefish (Sepia officinalis) stored at 2°C using next generation sequencing and volatilome analysis. Food Microbiol. 76 518–525. 10.1016/j.fm.2018.08.004 30166182
Pellissery A. J., Vinayamohan P. G., Amalaradjou M. A. R., Venkitanarayanan K., (2020). “Spoilage bacteria and meat quality,” in Meat Quality Analysis, (Amsterdam: Academic Press), 307–334. 10.1016/b978-0-12-819233-7.00017-3
Pennacchia C., Ercolini D., Villani F., (2011). Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack. Food Microbiol. 28 84–93. 10.1016/j.fm.2010.08.010 21056779
Pérez-Cataluña A., Elizaquível P., Carrasco P., Espinosa J., Reyes D., Wacher C., et al. (2018). Diversity and dynamics of lactic acid bacteria in Atole agrio, a traditional maize-based fermented beverage from South-Eastern Mexico, analysed by high throughput sequencing and culturing. Antonie Van Leeuwenhoek 111 385–399. 10.1007/s10482-017-0960-1 29058140
Peruzy M. F., Murru N., Yu Z., Cnockaert M., Joossens M., Proroga Y. T. R., et al. (2019). Determination of the microbiological contamination in minced pork by culture dependent and 16S amplicon sequencing analysis. Int. J. Food Microbiol. 290 27–35. 10.1016/j.ijfoodmicro.2018.09.025 30292676
Petruzzi L., Corbo M. R., Sinigaglia M., Bevilacqua A., (2017). “Microbial spoilage of foods: fundamentals,” in The Microbiological Quality of Food: Foodborne Spoilers, eds Bevilacqua A., Corbo M. R., Sinigaglia M., (Amsterdam: Elsevier Inc), 1–21.
Połka J., Rebecchi A., Pisacane V., Morelli L., Puglisi E., (2015). Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons. Food Microbiol. 46 342–356. 10.1016/j.fm.2014.08.023 25475305
Porcellato D., Aspholm M., Skeie S. B., Monshaugen M., Brendehaug J., Mellegård H., (2018). Microbial diversity of consumption milk during processing and storage. Int. J. Food Microbiol. 266 21–30. 10.1016/j.ijfoodmicro.2017.11.004 29161642
Pothakos V., Devlieghere F., Villani F., Björkroth J., Ercolini D., (2015). Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 109 66–74. 10.1016/j.meatsci.2015.04.014 25972087
Pothakos V., Samapundo S., Devlieghere F., (2012). Total mesophilic counts underestimate in many cases the contamination levels of psychrotrophic lactic acid bacteria (LAB) in chilled-stored food products at the end of their shelf-life. Food Microbiol. 32 437–443. 10.1016/j.fm.2012.07.011 22986212
Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35 7188–7196. 10.1093/nar/gkm864 17947321
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 D590–D596. 10.1093/nar/gks1219 23193283
Quigley L., O’Sullivan O., Stanton C., Beresford T. P., Ross R. P., Fitzgerald G. F., et al. (2013). The complex microbiota of raw milk. FEMS Microbiol. Rev. 37 664–698. 10.1111/1574-6976.12030 23808865
R Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ribeiro Júnior J. C., de Oliveira A. M., Silva F., de G., Tamanini R., de Oliveira A. L. M., et al. (2018). The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. J. Dairy Sci. 101 75–83. 10.3168/jds.2017-13069 29102138
Riquelme C., Câmara S., de Enes Dapkevicius M. L. N., Vinuesa P., da Silva C. C. G., Malcata F. X., et al. (2015). Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food). Int. J. Food Microbiol. 192 86–94. 10.1016/j.ijfoodmicro.2014.09.031 25440551
Rouger A., Remenant B., Prévost H., Zagorec M., (2017). A method to isolate bacterial communities and characterize ecosystems from food products: validation and utilization in as a reproducible chicken meat model. Int. J. Food Microbiol. 247 38–47. 10.1016/j.ijfoodmicro.2016.04.028 27184973
Samapundo S., de Baenst I., Aerts M., Cnockaert M., Devlieghere F., Van Damme P., (2019). Tracking the sources of psychrotrophic bacteria contaminating chicken cuts during processing. Food Microbiol. 81 40–50. 10.1016/j.fm.2018.06.003 30910087
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 19801464
Shirtliff M. E., Mader J. T., Camper A. K., (2002). Molecular interactions in biofilms. Chem. Biol. 9 859–871. 10.1016/S1074-5521(02)00198-9
Silbande A., Cornet J., Cardinal M., Chevalier F., Rochefort K., Smith-Ravin J., et al. (2018). Characterization of the spoilage potential of pure and mixed cultures of bacterial species isolated from tropical yellowfin tuna (Thunnus albacares). J. Appl. Microbiol. 124 559–571. 10.1111/jam.13663 29222941
Simões M., Simões L. C., Vieira M. J., (2010). A review of current and emergent biofilm control strategies. LWT Food Sci. Technol. 43 573–583. 10.1016/J.LWT.2009.12.008
Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M., (2015). rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43 D593–D598. 10.1093/nar/gku1201 25414355
Stoops J., Ruyters S., Busschaert P., Spaepen R., Verreth C., Claes J., et al. (2015). Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiol. 48 192–199. 10.1016/j.fm.2014.12.012 25791008
Sundberg M., Christiansson A., Lindahl C., Wahlund L., Birgersson C., (2011). Cleaning effectiveness of chlorine-free detergents for use on dairy farms. J. Dairy Res. 78 105–110. 10.1017/S0022029910000762 21134310
Wijman J. G. E., De Leeuw P. P. L. A., Moezelaar R., Zwietering M. H., Abee T., (2007). Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl. Environ. Microbiol. 73 1481–1488. 10.1128/AEM.01781-06 17209076
Wirtanen G., Salo S., (2016). “Biofilm risks,” in Handbook of Hygiene Control in the Food Industry (Cambridge: Woodhead Publishing), 55–79. 10.1016/B978-0-08-100155-4.00005-4
Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., et al. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 1613–1617. 10.1099/ijsem.0.001755 28005526
Zhao F., Zhou G., Ye K., Wang S., Xu X., Li C., (2015). Microbial changes in vacuum-packed chilled pork during storage. Meat. Sci. 100 145–149. 10.1016/j.meatsci.2014.10.004 25460118