Abstract :
[en] In a context of climate change, African agriculture aims at developing new approaches to face multiple constraints related to water scarcity, soil degradation or nutrients depletion. Nonrenewable resources such as phosphorus are of concern. Precision farming, as a new alternative to conventional agriculture, aims to improve crop productivity through the optimization of water and nutrients use efficiency. It considers the spatiotemporal variability of fields related to soil heterogeneity, plant nutrient needs and meteorological conditions through the growing season. For an effective management of soil and crop system, several new technologies have emerged, including soil-plant sensing, innovative crop management practices, and crop growth simulation and yield forecasting models. Regarding phosphorus management, use efficiency can be improved through the accurate assessment of phosphorus status in soil and plant. Proximal sensing based on visible near-infrared spectroscopy seems to be a promising alternative to manage soil fertility, understand phosphorus dynamics and enhance crop productivity. These aims can be also achieved by adopting hyper-frequent drip fertigation as an efficient agricultural practice, combined to hydrogeophysics to monitor water and nutrient fluxes in the soil-plant continuum. In addition, based on the interactions between meteorological conditions, soil properties and crop management, the use of agrometeorological models in simulation of crop growth parameters and forecasting crop production levels may allow assessing soil fertility and potential, ensuring an optimal future exploitation of farmland through the improvement of fertilization practices in an integrated management cropping system.