Dynamic; Ileum; Microbiota; Piglet; Weaning; in vitro model of fermentation
Abstract :
[en] The study aimed to adapt the SHIME(R) model, developed to simulate human digestion and fermentation, to a baby-SPIME (baby Simulator of Pig Intestinal Microbial Ecosystem). What constitutes a unique feature of this model is its twofold objective of introducing an ileal microbial community and mimicking a dietary weaning transition. This model should then be ideally suited to test the dietary weaning strategies of piglets in vitro. Regarding the microbiota, the main phyla making up the model were Firmicutes, Bacteroidetes and Proteobacteria although Bacteroidetes decreased after inoculation (p=0.043 in ileum, p=0.021 in colon) and Delta-Proteobacteria were favoured (p=0.083 in ileum, p=0.043 in colon) compared to Gamma-Proteobacteria. The designed model led to a low representation of Bacilli - especially Lactobacillus sp. in the ileum and a weak representation of Bacteroidia in the proximal colon. However, Mitsuokella and Prevotella were part of the major genera of the model along with Bifidobacterium, Fusobacterium, Megasphaera and Bacteroides. As a result of weaning, two major changes - normally occurring in vivo - were detected in the system: firstly, Firmicutes diminished when Bacteroidetes increased particularly in the proximal colon; secondly, Bacteroides decreased and Prevotella increased (mean value for four runs). In terms of metabolite production, while a ratio acetate: propionate: butyrate of 60:26:14 was obtained in post-weaned colon, the expected inversion of the ratio propionate: butyrate in the post-weaned ileum was unfortunately not observed. To conclude, the so-called baby-SPIME model meets expectations regarding the resident microbiota of the proximal colon bioreactor and the metabolites produced thereof. In terms of the evolution of major groups of bacteria, the in vitro weaning process appeared to be successful. However, higher concentration of butyric acid would have been expected in ileum part of newly weaned piglets, as observed in vivo. The microbiota in the ileum bioreactor seemed in fact to act like a pre-colon. This suggests that microbial profile in ileum bioreactor had to be improved.
Everaert, Nadia ; Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Lebrun, Sarah ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Douny, Caroline ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Scippo, Marie-Louise ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Li, Bing
Taminiau, Bernard ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Marzorati, Massimo
Wavreille, Jose
Froidmont, Eric
Rondia, Pierre
Delcenserie, Véronique ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Gestion de la qualité dans la chaîne alimentaire
Language :
English
Title :
Baby-SPIME: A dynamic in vitro piglet model mimicking gut microbiota during the weaning process.
Publication date :
2019
Journal title :
Journal of Microbiological Methods
ISSN :
0167-7012
eISSN :
1872-8359
Publisher :
Elsevier, Netherlands
Volume :
167
Pages :
105735
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Copyright (c) 2019 The Authors. Published by Elsevier B.V. All rights reserved.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Awati, A., Bosch, M.W., Tagliapietra, F., Williams, B.A., Verstegen, M.W.A., Difference in in vitro fermentability of four carbohydrates and two diets, using ileal and faecal inocula from unweaned piglets. J. Sci. Food Agric. 86 (2006), 573–582, 10.1002/jsfa.2387.
Awati, A., Williams, B.A., Bosch, M.W., Verstegen, M.W.A., Dietary carbohydrates with different rates of fermentation affect fermentation end-product profiles in different sites of gastro-intestinal tract of weaning piglet. Anim. Sci. 82 (2006), 837–843, 10.1017/ASC2006103.
Begley, M., Gahan, C.G.M., Hill, C., The interaction between bacteria and bile. FEMS Microbiol. Rev. 29 (2005), 625–651, 10.1016/j.femsre.2004.09.003.
Bindelle, J., Buldgen, A., Boudry, C., Leterme, P., Effect of inoculum and pepsin – pancreatin hydrolysis on fibre fermentation measured by the gas production technique in pigs. Anim. Feed Sci. Technol. 132 (2007), 111–122, 10.1016/j.anifeedsci.2006.03.009.
Crespo-Piazuelo, D., Estellé, J., Revilla, M., Criado-Mesas, L., Ramayo-Caldas, Y., Óvilo, C., Fernández, A.I., Ballester, M., Folch, J.M., Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci. Rep. 8 (2018), 1–12, 10.1038/s41598-018-30932-6.
Davis, S.S., Illum, L., Hinchcliffe, M., Gastrointestinal transit of dosage forms in the pig. J. Pharm. Pharmacol. 53 (2001), 33–39, 10.1211/0022357011775163.
De Rodas, B., Youmans, B.P., Danzeisen, J.L., Tran, H., Johnson, T.J., Microbiome profiling of commercial pigs from farrow to finish. J. Anim. Sci. 96 (2018), 1778–1794, 10.1093/jas/sky109.
De Witte, C., Flahou, B., Ducatelle, R., Smet, A., De Bruyne, E., Cnockaert, M., Taminiau, B., Daube, G., Vandamme, P., Haesebrouck, F., Detection, isolation and characterization of fusobacterium gastrosuis sp. nov. colonizing the stomach of pigs. Syst. Appl. Microbiol. 40 (2017), 42–50, 10.1016/j.syapm.2016.10.001.
Douny, C., Dufourny, S., Brose, F., Verachtert, P., Rondia, P., Lebrun, S., Marzorati, M., Everaert, N., Delcenserie, V., Scippo, M.-L., Development of an analytical method to detect short-chain fatty acids by SPME-GC–MS in samples coming from an in vitro gastrointestinal model. J. Chromatogr. B 1124 (2019), 188–196, 10.1016/j.jchromb.2019.06.013.
Fleury, M.A., Le Goff, O., Denis, S., Chaucheyras-Durand, F., Jouy, E., Kempf, I., Alric, M., Blanquet-Diot, S., Development and validation of a new dynamic in vitro model of the piglet colon (PigutIVM): application to the study of probiotics. Appl. Microbiol. Biotechnol. 101 (2017), 2533–2547, 10.1007/s00253-017-8122-y.
Guevarra, R.B., Hong, S.H., Cho, J.H., Kim, B., Shin, J., Lee, J.H., Kang, B.N., Kim, Y.H., Wattanaphansak, S., Isaacson, R.E., Song, M., Kim, H.B., The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. J. Anim. Sci. Biotechnol. 9 (2018), 1–9, 10.1186/s40104-018-0269-6.
Ilhan, Z.E., Marcus, A.K., Kang, D., Rittmann, B.E., Krajmalnik-Brown, R., pH-mediated microbial and metabolic interactions in fecal enrichment cultures. mSphere 2 (2017), 1–12, 10.1128/mSphere.
Isaacson, R., Kim, H.B., The intestinal microbiome of the pig. Anim. Health Res. Rev. 13 (2012), 100–109, 10.1017/S1466252312000084.
Islam, K.B.M.S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T., Yokota, A., Bile acid is a host factor that regulates the composition of the Cecal microbiota in rats. Gastroenterology 141 (2011), 1773–1781, 10.1053/j.gastro.2011.07.046.
Kim, H.B., Isaacson, R.E., The pig gut microbial diversity : understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 177 (2015), 242–251, 10.1016/j.vetmic.2015.03.014.
Konstantinov, S.R., Favier, C.F., ZHu, W.Y., Williams, B.A., Klüb, J., Souffrant, W., De Vos, W.M., Akkermans, A.D.L., Smidt, H., Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition. Anim. Res. 53 (2004), 317–324, 10.1051/animres.
Kraler, M., Schedle, K., Schwarz, C., Domig, K.J., Pichler, M., Oppeneder, A., Wetscherek, W., Prückler, M., Pignitter, M., Pirker, K.F., Somoza, V., Heine, D., Kneifel, W., Fermented and extruded wheat bran in piglet diets : impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals. Arch. Anim. Nutr. 69 (2015), 378–398, 10.1080/1745039X.2015.1075671.
Krieg, N.R., Staley, J.T., Brown, D.R., Hedlund, B.P., Paster, B.J., Ward, N.L., Ludwig, W., Whitman, W., Bergey's Manual(R) of Systematic Bacteriology: Volume Four the Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. 2nd ed, 2010, Springer, New York, NY, 10.1007/978-0-387-68572-4.
Li, N., Huang, S., Jiang, L., Dai, Z., Li, T., Han, D., Wang, J., Characterization of the early life microbiota development and predominant Lactobacillus species at distinct gut segments of low- and normal-birth-weight piglets. Front. Microbiol. 10 (2019), 1–14, 10.3389/fmicb.2019.00797.
Mach, N., Berri, M., Estellé, J., Levenez, F., Lemonnier, G., Denis, C., Leplat, J., Chevaleyre, C., Billon, Y., Doré, J., Rogel-gaillard, C., Lepage, P., Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 7 (2015), 554–569, 10.1111/1758-2229.12285.
Molly, K., Vande Woestyne, M., Verstraete, W., Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39 (1993), 254–258.
Niu, Q., Li, P., Hao, S., Zhang, Y., Kim, S.W., Li, H., Ma, X., Huang, R., Dynamic distribution of the gut microbiota and the relationship with apparent crude Fiber digestibility and growth stages in pigs. Sci. Rep. 5:9938 (2015), 1–7, 10.1038/srep09938.
Pajarillo, E.A.B., Chae, J., Balolong, M.P., Kim, H.B., Kang, D., Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J. Gen. Appl. Microbiol. 60 (2014), 140–146, 10.2323/jgam.60.140.
Pieper, R., Janczyk, P., Zeyner, A., Smidt, H., Guiard, V., Souffrant, W.B., Ecophysiology of the developing Total bacterial and Lactobacillus communities in the terminal small intestine of weaning piglets. Microb. Ecol. 56 (2008), 474–483, 10.1007/s00248-008-9366-y.
Poeker, S.A., Lacroix, C., de Wouters, T., Spalinger, M.R., Scharl, M., Geirnaert, A., Stepwise development of an in vitro continuous fermentation model for the murine Caecal microbiota. Front. Microbiol. 10 (2019), 1–14, 10.3389/fmicb.2019.01166.
Slifierz, M.J., Friendship, R.M., Weese, J.S., Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 15:184 (2015), 1–12, 10.1186/s12866-015-0512-7.
Snoeck, V., Cox, E., Verdonck, F., Joensuu, J.J., Goddeeris, B.M., Influence of porcine intestinal pH and gastric digestion on antigenicity of F4 fimbriae for oral immunisation. Vet. Microbiol. 98 (2004), 45–53, 10.1016/j.vetmic.2003.10.020.
Snoeck, V., Huyghebaert, N., Cox, E., Vermeire, A., Saunders, J., Remon, J.P., Verschooten, F., Goddeeris, B.M., Gastrointestinal transit time of nondisintegrating radio-opaque pellets in suckling and recently weaned piglets. J. Control. Release 94 (2004), 143–153, 10.1016/j.jconrel.2003.09.015.
Tanner, S.A., Berner, A.Z., Rigozzi, E., Grattepanche, F., Chassard, C., Lacroix, C., In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLoS One 9 (2014), 1–9, 10.1371/journal.pone.0094123.
Tao, X., Xu, Z., Wan, J., Anaerobe intestinal microbiota diversity and expression of pattern recognition receptors in newly weaned piglets. Anaerobe 32 (2015), 51–56, 10.1016/j.anaerobe.2014.12.005.
Thomas, F., Hehemann, Jan-Hendrik, Rebuffet, E., Czjzek, M., Michel, G., Environmental and gut bacteroidetes : the food connection. Front. Microbiol. 2 (2011), 1–16, 10.3389/fmicb.2011.00093.
Tran, T.H.T., Boudry, C., Everaert, N., Théwis, A., Portetelle, D., Daube, G., Nezer, C., Taminiau, B., Bindelle, J., Adding mucins to an in vitro batch fermentation model of the large intestine induces changes in microbial population isolated from porcine feces depending on the substrate. FEMS Microbiol. Ecol. 92 (2016), 1–13, 10.1093/femsec/fiv165.
Van den Abbeele, P., Grootaert, C., Marzorati, M., Possemiers, S., Verstraete, W., Gérard, P., Rabot, S., Bruneau, A., El Aidy, S., Derrien, M., Zoetendal, E., Kleerebezem, M., Smidt, H., Van De Wiele, T., Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 76 (2010), 5237–5246, 10.1128/AEM.00759-10.
Van den Abbeele, P., Roos, S., Eeckhaut, V., Mackenzie, D.A., Derde, M., Verstraete, W., Marzorati, M., Possemiers, S., Vanhoecke, B., Van Immerseel, F., Van de Wiele, T., Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 5 (2012), 106–115, 10.1111/j.1751-7915.2011.00308.x.
van der Ark, K.C.H., Aalvink, S., Suarez-diez, M., Schaap, P.J., de vos Willem, M., Belzer, C., Model-driven design of a minimal medium for Akkermansia muciniphila con fi rms mucus adaptation. Microb. Biotechnol. 11 (2018), 476–485, 10.1111/1751-7915.13033.
von Heimendahl, E., Breves, G., Abel, H., Fiber-related digestive processes in three different breeds of pigs. J. Anim. Sci. 88 (2010), 972–981, 10.2527/jas.2009-2370.
Wang, W., Cao, J., Li, J.R., Yang, F., Li, Z., Li, L.X., Comparative analysis of the gastrointestinal microbial communities of bar-headed goose (Anser indicus) in different breeding patterns by high-throughput sequencing. Microbiol. Res. 182 (2016), 59–67, 10.1016/j.micres.2015.10.003.
Williams, B.A., Bosch, M.W., Awati, A., Konstantinov, S.R., Smidt, H., Akkermans, A.D.L., Verstegen, M.W.A., Tamminga, S., In vitro assessment of gastrointestinal tract (GIT) fermentation in pigs: fermentable substrates and microbial activity. Anim. Res. 54 (2005), 191–201, 10.1051/animres.
Zhao, W., Wang, Y., Liu, S., Huang, J., Zhai, Z., He, C., Ding, J., Wang, J., Wang, H., Fan, W., Jianguo, Z., Meng, H., The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 10 (2015), 1–13, 10.1371/journal.pone.0117441.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.