Paper published in a journal (Scientific congresses and symposiums)
CLASSIFICATION AND INTEGRATION OF MASSIVE 3D POINTS CLOUDS IN A VIRTUAL REALITY (VR) ENVIRONMENT
Kharroubi, Abderrazzaq; Hajji, Rafika; Billen, Roland et al.
2019In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2 (W17), p. 165-171
Peer Reviewed verified by ORBi
 

Files


Full Text
isprs-archives-XLII-2-W17-165-2019.pdf
Publisher postprint (1.78 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Virtual reality; 3D Point cloud; Octree data structure; Segmentation; Spatial Indexation; Classification
Abstract :
[en] With the increasing volume of 3D applications using immersive technologies such as virtual, augmented and mixed reality, it is very interesting to create better ways to integrate unstructured 3D data such as point clouds as a source of data. Indeed, this can lead to an efficient workflow from 3D capture to 3D immersive environment creation without the need to derive 3D model, and lengthy optimization pipelines. In this paper, the main focus is on the direct classification and integration of massive 3D point clouds in a virtual reality (VR) environment. The emphasis is put on leveraging open-source frameworks for an easy replication of the findings. First, we develop a semi-automatic segmentation approach to provide semantic descriptors (mainly classes) to groups of points. We then build an octree data structure leveraged through out-of-core algorithms to load in real time and continuously only the points that are in the VR user's field of view. Then, we provide an open-source solution using Unity with a user interface for VR point cloud interaction and visualisation. Finally, we provide a full semantic VR data integration enhanced through developed shaders for future spatio-semantic queries. We tested our approach on several datasets of which a point cloud composed of 2.3 billion points, representing the heritage site of the castle of Jehay (Belgium). The results underline the efficiency and performance of the solution for visualizing classifieds massive point clouds in virtual environments with more than 100 frame per second.
Disciplines :
Earth sciences & physical geography
Computer science
Author, co-author :
Kharroubi, Abderrazzaq  
Hajji, Rafika
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Poux, Florent  ;  Université de Liège - ULiège > Département de géographie > Unité de Géomatique - Topographie et géométrologie
Language :
English
Title :
CLASSIFICATION AND INTEGRATION OF MASSIVE 3D POINTS CLOUDS IN A VIRTUAL REALITY (VR) ENVIRONMENT
Alternative titles :
[fr] CLASSIFICATION ET INTÉGRATION DE NUAGES DE POINTS 3D MASSIFS DANS UN ENVIRONNEMENT DE RÉALITÉ VIRTUELLE (VR)
Publication date :
29 November 2019
Event name :
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications
Event organizer :
INSA Strasbourg
Event place :
Strasbourg, France
Event date :
du 2 décembre 2019 au 3 décembre 2019
Audience :
International
Journal title :
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ISSN :
1682-1750
eISSN :
2194-9034
Publisher :
Copernicus, Goettingen, Germany
Volume :
XLII-2
Issue :
W17
Pages :
165-171
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 11 December 2019

Statistics


Number of views
1266 (71 by ULiège)
Number of downloads
719 (20 by ULiège)

Scopus citations®
 
26
Scopus citations®
without self-citations
20
OpenCitations
 
7
OpenAlex citations
 
24

publications
22
supporting
0
mentioning
16
contrasting
0
Smart Citations
22
0
16
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi