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ABSTRACT: 

 

 

With the increasing volume of 3D applications using immersive technologies such as virtual, augmented and mixed reality, it is very 

interesting to create better ways to integrate unstructured 3D data such as point clouds as a source of data. Indeed, this can lead to an 

efficient workflow from 3D capture to 3D immersive environment creation without the need to derive 3D model, and lengthy 

optimization pipelines. In this paper, the main focus is on the direct classification and integration of massive 3D point clouds in a 

virtual reality (VR) environment. The emphasis is put on leveraging open-source frameworks for an easy replication of the findings. 

First, we develop a semi-automatic segmentation approach to provide semantic descriptors (mainly classes) to groups of points. We 

then build an octree data structure leveraged through out-of-core algorithms to load in real time and continuously only the points that 

are in the VR user's field of view. Then, we provide an open-source solution using Unity with a user interface for VR point cloud 

interaction and visualisation. Finally, we provide a full semantic VR data integration enhanced through developed shaders for future 

spatio-semantic queries. We tested our approach on several datasets of which a point cloud composed of 2.3 billion points, representing 

the heritage site of the castle of Jehay (Belgium). The results underline the efficiency and performance of the solution for visualizing 

classifieds massive point clouds in virtual environments with more than 100 frame per second. 

 

1. INTRODUCTION 

The use of laser scanners and photogrammetric reconstruction 

methods, coupled with the development of processing algorithms 

and the increase of computational power have led to the creation 

of massive point cloud data sets (Scheiblauer et al., 2014). In 

addition to position information, the laser scanner data is 

enhanced through different attributes (e.g. colour information for 

each point) which can be used through different point cloud 

rendering algorithms (Mures et al., 2016). Very interestingly, 

point cloud can be enhanced by integrating semantics (Poux, 

2019; Poux et al., 2016a) through intelligent processes such as 

those based on semantic segmentation (Poux and Billen, 2019a). 

In this article, we will investigate the use of semantics for 

interaction and rendering purposes for highly immersive 

applications and decision-making. We will focus on low cost and 

open source solutions for better integrating semantically rich 3D 

point clouds in Virtual reality (VR) environments. 

 

In several fields such as architecture, archaeology and cultural 

heritage, the production of 3D models representing a physical 

reality in a detailed and fast manner has gain a lot of attention. 

Indeed, through the application of new 3D visualization methods, 

one can visualize and manipulate virtual objects of interest in a 

virtual environment. As highlighted by (Mures et al., 2016; 

Whyte, 2018), these interactive renderings permit among other to 

see and control the progress and the quality of the work done on 

the worksite. It also allows archaeologists and curators to analyze 

archaeological and heritage sites remotely, also usable for 

teaching and training purposes. Also, architects can control the 

state of buildings and extract information for the exploitation and 

updating of their digital models. The immersive dimension in 

visualization techniques replaces the real environment with a 
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complete virtual one using a headset (VR) or a Cave Automatic 

Virtual Environment (CAVE), which permits the user to interact 

with objects without the limitations that the real world represents. 

In addition, visualization on a two-dimensional screen gives less 

immersion effect and less realism of the acquired environment. 

 

The current integration state of point cloud data in VR set-ups is 

very low, often needing data derivation through lengthy 

optimization pipeline to obtain coherent 3D models with multiple 

levels of Details (LoD) (Nebiker et al., 2010). Given their large 

volume and their discrete nature, visualization and 3D rendering 

is  a great challenge, especially in terms of storage and processing 

capabilities (Scheiblauer et al., 2014). On top, to our knowledge, 

there is no work done on exploring the integration of semantics 

in VR environments to extend the possibilities by using both 

spatial and semantic attributes (Poux et al., 2016a; Poux and 

Billen, 2019b).  

 

In order to structure semantics, we first provide a semi-automatic 

point cloud segmentation and classification (2)  using solely 

Cloud Compare (CloudCompare, 2019). Then, after indexing and 

structuring the data into a coherent Octree structure (Schuetz, 

2016), we implement the solution (3)  under the Game Engine 

Unity (Unity, 2018)  for loading and visualizing the results of 

classification. Finally, the application is deployed for immersive 

visualization with the Oculus rift VR headset (Oculus, 2019). At 

the end, performance tests are performed based on multiple 

criteria such as memory consumption and the number of frames 

per second (4). We finally provide several perspectives for future 

work (5). 
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2. POINT CLOUD SEGMENTATION AND 

CLASSIFICATION 

In this section, we first present the datasets and acquisition 

specificities (2.1). Then, we present a semi-automatic workflow 

(2.2) & (2.3) for classifying different datasets. Finally, we 

address the hierarchical structuration of the data (2.4). 

 

2.1 3D point cloud data specificities 

In addition to the point clouds acquired on site (Jehay Castle, 

(Poux et al., 2016b), Figure 1), we processed several points cloud 

(Table 1) from different sensors such as NavVIS M6 (NavVIS, 

2019), GeoSLAM ZEB REVO (GeoSLAM, 2019), Structure 

From Motion(SfM) and terrestrial laser scanner(TLS) Leica P30 

(Leica, 2019). Seven point cloud datasets were used and the 

purpose of this diversity is to test the influence of adding/lacking 

information (RGB, intensity) on the difficulty of segmentation 

especially when this operation is assisted by an operator. The 

second goal is to test the solution developed on several point 

clouds with variable sizes ranging from small to large number of 

points per cloud. The third goal is to create labelled datasets that 

can be used as training data and deep learning algorithms for 

semantic segmentation for the scientific community. 

 

 
Figure 1. Point cloud of Jehay castle with approximately  

3 billion points. 

 

Id Points number Attribute sensor Size Go 

1 2.300.247.428 RGB, intensity Leica P30 69.636 

2 312.710.687 RGB, intensity TLS 4,907 

3 259.101.028 RGB, intensity TLS 4,807 

4 115.190.236 RGB, intensity TLS 3,824 

5 44.847.540 RGB NavVIS 0,657 

6 53.800.194 without REVO 0,630 

7 4.244.416 RGB NavVIS 0,062 

Table 1. Different points clouds to segment. 

 

2.2 Segmentation 

Segmentation is a crucial step for the introduction of semantic 

information on the physical objects contained in the point cloud. 

Shi Pu and George Vosselman, (2006) define it as a “the process 

of labeling each point of the point cloud, so that these points 

belonging to a particular surface or region, have the same 

label”. 

 

 

 

The segmentation is done under CloudCompare software 

(CloudCompare, 2019). We started by segmenting the point 

cloud into subspaces as defined in (F. Poux et al., 2017) (e.g. 

rooms for building), then segmenting each subspace into smaller 

significant segments corresponding to classes (walls, doors, 

windows, chairs, offices, closets, etc.) as in Figure 2. The 

segmentation is done semi-automatically with the selection tools 

available on CloudCompare, assisted by the following automatic 

plugins: 

 

• RANSAC Shape Detection: based on an automatic shape 

detection algorithm as proposed by (Wahl and Klein, 2007). It 

can detect geometric shapes, planes, spheres, cylinders, cones, 

and tori. 

 

• CSF: is a tool used to separate ground points from the rest of 

the point cloud, based on the cloth simulation filter developed by 

(Zhang et al., 2016) 

 

 

• Histogram filtering: filters the points of the selected cloud 

according to their associated scalar value (e.g. the Z value). A 

new cloud is created with points in the specified range. 

 

• Label Connected Components: this tool segments the selected 

cloud(s) into smaller parts separated by a minimum distance. 

 

• CANUPO: it allows to create classifiers (by forming them on 

small samples) and / or to apply a classifier at the same time on a 

cloud of points in order to separate it in two subsets. It also 

generates a classification trust value for each point to quickly 

identify cases that are classification problems or misclassification 

(usually at the class boundaries). 

 

(a) 

 
(b) 
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(c) 

Figure 2. Multi scale segmentation :(a) raw point cloud ;(b) The 

point cloud segmented into a subspaces ;(c) Subspace 

segmented into several smaller elements. 

 

2.3 Classification 

In this step, we assign for each created segment a specific class 

pointer. First, a classification list is established regrouping 

several indoor classes and outdoor classes that holds a great 

potential for several applications (Table 2). Then, a new scalar 

field with a constant integer value is created named 

"Classification", in order to respect the specifications of the 

export format which is the “.las” format. This point cloud format 

supports this attribute by default. A class number is assigned to 

this created classification field. 

 

Indoor Outdoor 

class number class number 

0 Floor 40 LowVegetation 

1 Ceiling 41 Human 

2 Wall 42 Pole 

3 Beam 43 LightingPole 

… … … … 

24 Poster 50 Roof 

Table 2. An extract from the list of established classes. 

 

Finally, any object in the point cloud has its corresponding class 

information (Figure 3), and the point cloud is exported in “.las” 

format or its compressed one “.laz” 

 

 
Figure 3. Classification results: a piece with different objects 

and their labels. 

 

2.4 Structuration in a Potree’s octree structure 

The main purpose of a data structure is to permit an easier/better 

access to the underlying data. As such, we orient ourselves by 

spatially indexing massive point clouds based on a Potree’s 

octree data structure for real time purposes. Potree uses a 

variation of the modifiable nested octree structure with a different 

subsampling method and a partition of the hierarchy into smaller, 

quickly streamable, chunks. The point cloud is iteratively 

subdivided into eight cubic parts (nodes in a tree) by starting from 

an initial "Bounding Cube" with an initial spacing. Then each part 

is subdivided in the same way and the spacing is halved to 

increase the density. The resolution of a node is defined by the 

spacing property, which specifies the minimum distance between 

points. Thus, as the depth of the tree increases, the spacing 

decreases and the level of detail increases, as shown in Figure 4. 

 

This step is done based on Potree Converter 1.6 (Potree, 2019). 

To have a structured point cloud in a Potree format, we take into 

account desired attributes being classification and intensity, 

which are kept during the on-disk structuring. 

 

                 
              (a) 

 
             (b) 

Figure 4. Potree’s octree structure explained in 2D: (a) Raw 

data; (b) the octree structure with a root with subsampling point 

and level 1 and level 2. 

 

3. APPLICATION IN VIRTUAL REALITY 

This rendering system was developed and implemented in C # 

under the Game Engine Unity version 2018.4.1f1, based on the 

scripts developed as part of Simon Maximilian Fraiss bachelor's 

thesis (Fraiss, 2017), entitled "Rendering Large Points Cloud in 

Unity". 

 

3.1 Point cloud loading 

The rendering of objects in Unity (Unity, 2018) is done by 

creating one or several GameObjects for each object to render. 

For each node of the structured point cloud that must be visible, 

one or more GameObjects must be created with an appropriate 

Mesh Filter and a Renderer Filter. For each node of the Octree 

that we want to display, we use a GameObject. If the node has 
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more than 65,000 vertices as specified by Unity, several 

GameObjects are needed. 

 

The loading process uses three threads: the Unity main thread, a 

traversing thread, and a loading thread. In the main thread, 

visible GameObjects are updated once per image if any necessary 

changes have been detected in the traversing thread. Game 

objects are created for Octree nodes that should be visible and do 

not yet have game objects, nodes that should no longer be visible 

have their game objects removed. Determining which node the 

game objects should be created or deleted is the job of the 

traversing thread. The loading thread is used to load point data 

from files (Fraiss, 2017). 

 

 
(a) 

 
(b) 

Figure 5. The nodes in front of the camera (in white) are 

rendered in more detail than those partially in the view: (a) 

original point cloud, (b) after classification. 

 

A Least Recently Used Cache (LRU) was implemented in order 

to keep the memory usage below a certain threshold. The cache 

has a maximum number of points it can store and if this threshold 

is breached, the points of the least recently used node are 

removed from memory. 

 

3.2 Point rendering 

To give a more realistic look to the point cloud, different point 

rendering techniques have been implemented based on the work 

of (Fraiss, 2017). No lighting model has been implemented 

because the test data sets do not contain normals, and has been 

colored using photos presenting static lightning. But with the 

addition of the classification (each class represented with one 

different color), the point cloud no longer has a realistic aspect of 

3D and depth such as in Figure 7.a. Thus, the creation of a shader 

to enhance the depth perception of a scene and to make the results 

look more pleasant is necessary. 

This improvement in visual appearance is shown in Figures 6 and 

Figure 7. 

 

The principle of this shader is simple, it consists in creating an 

effect like the Eye-Dome lighting (Boucheny and Ribes, 2017) 

by representing each point in the form of a square or circle, then 

assigning a black color to a corner (bottom left). In our case of 

square or circle rendering, it results as presented in figure 6: 

        
  (a)                           (b)   

Figure 6. Principle of the implemented shader: (a) shown with 

the square shape, (b) and a circle. 

 

To manage occlusion situations between points, Schütz and 

Wimmer,(2016) have developed a method that creates an 

interpolation of nearest neighbor type points (Scheiblauer and 

Wimmer, 2011; Schuetz, 2016). To do this, the points are 

represented in the form of 3D shapes, such as cones, spheres or 

paraboloids, facing the screen, instead of simple squares. In this 

work, interpolations with cones and paraboloids have been 

implemented.  

 

 
(a) 

 
(b) 

Figure 7. Classified point cloud rendered;(a) before and after(b) 

application of the implemented Shader. 

 

3.3 User interface 

To facilitate interaction and to make the virtual reality experience 

more immersive, a user interface is created by adding a canvas 

that is a GameObject encompassing the elements of the user 

interface, Figure 8.  

Once displayed in the virtual world directly in front of the user, 

it keeps the same fixed position for easy selection and pointing 

by a laser pointer (element 5) created by adding a Graphic 

Raycaster to our canvas (Menu that includes the different 
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elements of type: Button, slider, check box, and text). After 

changing the parameters, the interface can be hidden and 

redisplayed when needed. This interface makes possible to 

change the size of the points (element 1), to change their shapes 

(element 2) (square or circle), to choose the interpolation to use 

between the types of paraboloid, cone, or without interpolation 

(element 3), to select the attributes (element 4) (rgb, 

classification, intensity) to display, and to check and uncheck the 

classes to be visualized (element 6). 

 

 
Figure 8. User interface for interacting directly with point cloud. 

 

Then, we integrated the Oculus Rift in the Unity project to allow 

rendering on the headset (the version of the Oculus application 

used is Oculus 1.39.0.272909). 

 

The OVRPlayerController is the easiest way to start navigating 

in a virtual environment. It is basically an OVRCameraRig prefab 

attached to a simple character controller. It includes a physics 

capsule, a movement system, a simple menu system with stereo 

rendering of text fields, and a cross-hair component.  

 

OVRCameraRig contains one Unity camera, the pose of which is 

controlled by head tracking. The result as seen in the headset is 

shown in figure 9. 

 

 
Figure 9. The scene as seen in the headset by the user. 

 

4. RESULTS 

In order to validate the proposed methodology and the solution 

implemented in this paper, several tests are done in Runtime (in 

play mode). It consist of testing the performance of the rendering 

methods used, the ability of the application to visualize classified 

massive point clouds, and comparative tests on the influence of 

the number of points loaded on its performance in term of 

memory consumption and number of frames per second (FPS). 

 

While the use of the oculus rift requires minimal computing 

power especially in terms of graphics card (Nvidia GeForce GTX 

1060 or better, AMD Radeon RX 480 or better), the application 

test is done on a computer with the following technical 

characteristics (Table 3): 

 

Processor Intel® Core™ i6-6800K CPU @ 

3.40GHz 3.40 GHz 

Graphic card NVIDIA GeForce GTX 1080 

RAM 48.0 Go 

Exploitation system Windows 10 Pro, 64 bits 

 

Table 3. Technical characteristics of the computer used with the 

Oculus headset. 

 

4.1 Influence of the number of points loaded in the scene on 

the FPS 

From figure 10 we clearly see the impact of the number of points 

allowed to be loaded in the scene (budget points) on the number 

of images rendered per second. 
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Figure 10. The variation of the FPS number according to the 

number of points loaded, JEHAY with 2.3 billion. 

 

It is visible that the more this number increases, the more the FPS 

decreases, due to numerous additional computing to display and 

render. With a number of 2 million, one ensures a good visual 

appearance of the visible scene, while keeping 90 FPS, which 

more than enough to ensure a smooth and comfortable viewing 

for the user as specified by Oculus rift (Oculus, 2019). 

 

4.2 Influence of cache on memory consumption 

The results of testing the influence of cache on memory 

consumption is given in Figure 11. We see that memory 

consumption increases proportionally when cache increases and 

the number of points loaded increases. For example, for a cache 

(LRU) of 100 million points, it is clear that the memory 

consumed passes from 1,475 Giga Byte for 2 Million points to be 

loaded to 1.985 GB for 10 Million points to load. 
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Figure 11. Variation of the memory consumption (in Mo) 

according to the size of the point cloud loaded and the LRU 

cache. 

 

4.3 Influence of point size on the number of FPS 

Among the rendering methods used in this work, we use a shader 

that allows to visualize each point as a square or circle on the 

screen, instead of viewing it on a single pixel. This type of 

visualization makes possible to circumvent the effects of point 

clouds density that form voids between points when this density 

is too low. However, this comes at the price that these methods 

are expensive in terms of rendering, greatly reducing the 

available FPS as seen in Figure 12. 

 
Figure 12. Influence of the variation of the point size on the 

FPS, JEHAY with a budget of 2Million, interpolation = 

paraboloid, LRU = 2M 

 

The graph in Figure 12 shows the effect of varying the point size 

in the number of pixels on the screen to see its effect on the 

number of FPS. It is clearly visible that the number of FPS 

decreases inversely proportional to the size of the point. More the 

size of points increases more the number of FPS decreases. 

 

5. DISCUSSIONS & PERSPECTIVES 

Our methodology has three main essentials steps: The 

segmentation and classification workflow; the structuration in 

Potree’s octree data structure; the integration and interaction with 

classified point clouds in VR. 

 

The segmentation and classification step presented includes 

semi-automatic methods. It has the advantage of being based on 

algorithms and open source tool but it remains time-consuming 

and requires the intervention of the experienced operator. Future 

use of semantic segmentation algorithms such as presented in 

(Florent Poux et al., 2017) will be investigated to reduce the 

intervention of the user. 

 

For visualization of massive point cloud we use Potree’s octree 

structure. This structuration makes it possible to considerably 

optimize the real-time visualization of large point clouds but 

remains a data structure that does not allow efficient edition of 

the contained point data. In addition to this, the structuring takes 

a considerable time that can range from a few minutes to ten 

hours when the point cloud exceeds billions of points, which 

orient us to investigate new indexation ways for data handling 

 

For immersive viewing, we demonstrated the usage of virtual 

reality technology with the Oculus rift headset for point cloud 

rendering. On top, we provide an improved shader to permit to 

grasp the depth through rendering, as well as the ability to interact 

with classification data. Thus, we facilitate the interaction via a 

user interface allowing a set of operation and change on the 

methods of rendering. 

 

The future works will mainly investigate the following 3 points: 

 

 Development of semantic segmentation process to automate 

the enhancement of point cloud with class information. 

 

 Creation of a dual spatial and classification indexing to make 

possible querying and direct interaction with the point cloud in 

the VR environment. 

 

 Implementation of the Continuous Level of Detail (Schütz et 

al., 2019) rendering method. 

 

6. CONCLUSION 

In this work, we propose a comprehensive approach for 

classifying and visualizing point clouds with several billion of 

points in real time, and continuously in a virtual reality (VR) 

environment. After a semi-automatic segmentation and 

classification, our approach proposes to leverage Potree’s data 

structure derived from the Modifiable Nested Octree to organize 

efficiently spatial and semantic attributes, primarily toward real-

time VR visualisation. The implementation in the open source 

Unity application has shown great performance in visualisation 

of massive point cloud. The future will focus mainly on the 

automation of semantic enrichment and their usage in VR 

interactions. Then we will address our point rendering approach 

toward a continuous level of detail tailored to perform both 

search queries and modifications on the point cloud in a VR 

environment. 
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