Brose, François ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Verachtert, Pauline
Rondia, Pierre
Lebrun, Sarah ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Marzorati, Massimo
Everaert, Nadia ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Delcenserie, Véronique ✱; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Gestion de la qualité dans la chaîne alimentaire
Scippo, Marie-Louise ✱; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
✱ These authors have contributed equally to this work.
Language :
English
Title :
Development of an analytical method to detect short-chain fatty acids by SPME-GC–MS in samples coming from an in vitro gastrointestinal model
Publication date :
2019
Journal title :
Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
Fonty, G., Chaucheyras-Durand, F., Les écosystèmes digestifs (Monographies de microbiologie/collection dirigée par Jean-Paul Larpent), Cachan, éditions Tec et Doc Lavoisier, Paris. 2007.
Den Besten, G., Van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D., Bakker, B.M., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54 (2013), 2325–2340.
Macfarlane, S., Macfarlane, G.T., Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, Edinburgh, 2003, 67–72.
Williams, B.A., Bosch, M.W., Awati, A., Konstantinov, S.R., Smidt, H., Akkermans, A.D.L., Verstegen, M.W.A., Tamminga, S., In vitro assessment of gastrointestinal tract (GIT) fermentation in pigs: fermentable substrates and microbial activity. Anim. Res. 54 (2005), 191–201.
Jha, R., Berrocoso, J.F.D., Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: a review. Anim. Feed Sci.Technol. 212 (2016), 18–26.
Awati, A., Williams, B.A., Bosch, M.W., Verstegen, M.W.A., Dietary carbohydrates with different rates of fermentation affect fermentation end-product profiles in different sites of gastro-intestinal tract of weaning piglet. Anim. Sci. 82 (2006), 837–843.
Freire, J.P.B., Guerreiro, A.J.G., Cunha, L.F., Aumaitre, A., Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Food Sci. Technol. 87 (2000), 71–83.
Shim, S.B., Williams, I.H., Verstegen, M.W., Effects of dietary fructo-oligosaccharide on villous height and disaccharidase activity of the small intestine, pH, VFA and ammonia concentrations in the large intestine of weaned pigs. Acta Agric. Scand., Sect. A – Anim. Sci. 55 (2005), 91–97.
Fleury, M.A., Le Goff, O., Denis, S., Chaucheyras-Durand, F., Jouy, E., Kempf, I., Alric, M., Blanquet-Diot, S., Development and validation of a new dynamic in vitro model of the piglet colon (PigutIVM): application to the study of probiotics. Appl. Microbiol. Biotechnol. 101 (2017), 2533–2547.
Van den Abbeele, P., Grootaert, C., Marzorati, M., Possemiers, S., Verstraete, W., Gérard, P., Rabot, S., Bruneau, A., El Aidy, S., Derrien, M., Zoetendal, E., Kleerebezem, M., Smidt, H., Van De Wiele, T., Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for bacteroidetes and clostridium cluster IX. Appl. Environ. Microbiol. 76 (2010), 5237–5246.
Van den Abbeele, P., Roos, S., Eeckhaut, V., Mackenzie, D.A., Derde, M., Verstraete, W., Marzorati, M., Possemiers, S., Vanhoecke, B., Van Immerseel, F., Van de Wiele, T., Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 5 (2012), 106–115.
Venema, K., Van den Abbeele, P., Experimental models of the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 27 (2013), 115–126.
Tanner, S.A., Berner, A.Z., Rigozzi, E., Grattepanche, F., Chassard, C., Lacroix, C., In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLoS One 9:e94123 (2014), 1–9.
Bianchi, F., Dall'Asta, M., Del Rio, D., Mangia, A., Musci, M., Scazzina, F., Development of a headspace solid-phase microextraction gas chromatography–mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation. Food Chem. 129 (2011), 200–205.
Molly, K., Vande Woestyne, M., Verstraete, W., Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39 (1993), 254–258.
Mandel, J., The Statistical Analysis of Experimental Data. 1964, Interscience Publ. J. Wiley & Sons, New York.
European Parliament and Council Directive No 2002/657/EC of 12 August 2002 implementing Council Directive 96/23 EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities, L221, 2002, 8–36.
Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes, L 276, 2010, 33–79.
Arrêté royal du 29 mai 2013 relatif à la protection des animaux d'expérience. Publié le 10/07/2013, 42808, C-2013/24221.
Montgomery, H.A.C., Dymock, J.F., Thom, N.S., The rapid colorimetric determination of organic acids and their salts in sewage sludge liquor. Analyst 87 (1962), 947–952.
Chatterjee, B., Radhakrishnan, L., Mazumder, D., New approach for determination of volatile fatty acid in anaerobic digester sample. Environ. Eng. Sci. 35 (2018), 333–351.
Deng, X., Peng, J., Luo, B., Wei, M., Hu, W., Du, J., A direct quantitative analysis method for monitoring biogenic volatile organic compounds released from leaves of Pelargonium hortorum in situ. Anal. Bioanal. Chem. 380 (2004), 950–957.
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Bioanalytical Method Validation, Guidance for Industry. 2018.
Zamora-Gasga, V.M., Loarca-Piña, G., Alberto Vázquez-Landaverde, P., Isela Ortiz-Basurto, R., Tovar, J., Sáyago-Ayerdi, S.G., In vitro colonic fermentation of food ingredients isolated from Agave tequilana Weber var. azul applied on granola bars. Food Sci. Technol.-Leb. 60 (2015), 766–772.
Luzardo-Ocampo, I., Campos-Vega, R., Cuellar-Nuñez, M.L., Vázquez-Landaverde, P.A., Mojica, L., Acosta-Gallegos, J.A., Loarca-Piña, G., Fermented non-digestible fraction from combined nixtamalized corn (Zea mays L.)/cooked common bean (Phaseolus vulgaris L.) chips modulate anti-inflammatory markers on RAW 264.7 macrophages. Food Chem. 259 (2018), 7–17.
Saa, D.T., Turroni, S., Serrazanetti, D.I., Rampelli, S., Maccaferri, S., Candela, M., Severgnini, M., Simonetti, E., Brigidi, P., Gianotti, A., Impact of Kamut® Khorasan on gut microbiota and metabolome in healthy volunteers. Food Res. Int. 63 (2014), 227–232.
Tamargo, A., Cueva, C., Laguna, L., Moreno-Arribas, M.V., Muñoz, L.A., Understanding the impact of chia seed mucilage on human gut microbiota by using the dynamic gastrointestinal model simgi®. J. Funct. Foods 50 (2018), 104–111.
Mills, G.A., Walker, V., Mughal, H., Headspace solid-phase microextraction with 1-pyrenyldiazomethane in-fibre derivatisation for analysis of faecal short-chain fatty acids. J. Chrom. B, 730, 1999 (113–1).
Fiori, J., Turroni, S., Candela, M., Brigidi, P., Gotti, R., Simultaneous HS-SPME GC-MS determination of short chain fatty acids, trimethylamine and trimethylamine N-oxide for gut microbiota metabolic profile. Talanta 189 (2018), 573–578.
Herrera-Cazares, L.A., Ramírez-Jiménez, A.K., Wall-Medrano, A., Campos-Vega, R., Loarca-Piña, G., Reyes-Vega, M.L., Vázquez-Landaverde, P.A., Gaytán-Martínez, M., Untargeted metabolomic evaluation of mango bagasse and mango bagasse based confection under in vitro simulated colonic fermentation. J. Funct. Foods 54 (2019), 271–280.
Di Cagno, R., De Angelis, M., De Pasquale, I., Ndagijimana, M., Vernocchi, P., Ricciuti, P., Gagliardi, F., Laghi, L., Crecchio, C., Guerzoni, M.E., Gobbetti, M., Francavilla, R., Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol., 11, 2011, 219.
Cueva, C., Jiménez-Girón, A., Muñoz-González, I., Esteban-Fernández, A., Gil-Sánchez, I., Dueñas, M., Martín-Álvarez, P.J., Pozo-Bayón, M.A., Bartolomé, B., Moreno-Arribas, M.V., Application of a new Dynamic Gastrointestinal Simulator (SIMGI) to study the impact of red wine in colonic metabolism. Food Res. Int. 72 (2015), 149–159.
Gil-Sánchez, I., Cueva, C., Sanz-Buenhombre, M., Guadarrama, A., Moreno-Arribas, M.V., Bartolomé, B., Dynamic gastrointestinal digestion of grape pomace extracts: bioaccessible phenolic metabolites and impact on human gut microbiota. J. Food Compos. Anal. 68 (2018), 41–52.
Fehlbaum, S., Chassard, C., Poeker, S.A., Derrien, M., Fourmestraux, C., Lacroix, C., Clostridium difficile colonization and antibiotics response in PolyFermS continuous model mimicking elderly intestinal fermentation. Gut Pathogens, 8, 2016, 63.
Kraler, M., Schedle, K., Schwarz, C., Domig, K.J., Pichler, M., Oppeneder, A., Wetscherek, W., Prückler, M., Pignitter, M., Pirker, K.F., Somoza, V., Heine, D., Kneifel, W., Fermented and extruded wheat bran in piglet diets: impact on performance, intestinal morphology, microbial metabolites in chyme and blood lipid radicals. Arch. Anim. Nutr. 69 (2015), 378–398.