Serum starvation raises turnover of phosphorylated p62/SQSTM1 (Serine 349), reveals expression of proteasome and N-glycanase1 interactive protein RAD23B and sensitizes human synovial fibroblasts to BAY 11-7085-induced cell death.
[en] Phosphorylation of p62/SQSTM1 (p62) on Serine 349 (P-Ser349 p62) as well as proteasome dysfunction have been shown to activate the cell protective Keap1/Nrf2 pathway. We showed previously that BAY 11-7085-induced human synovial fibroblast cell death includes autophagy and p62 downregulation. In this work, we have studied expression of P-Ser349 p62 in human synovial fibroblasts. Results showed that P-Ser349 p62 was not detected in synovial cell extracts unless cells were cultured in the presence of proteasome inhibitor (MG132). MG132 revealed P-Ser349 p62 turnover, that was further increased by concomitant autophagy inhibition and markedly enhanced in serum starved cells. Starvation sensitized synovial fibroblasts to BAY 11-7085 while MG132 protected both non-starved and starved cells from BAY 11-7085-induced cell death. Lentivirus mediated overexpression of phosphorylation-mimetic p62 mutant S349E markedly protected synovial fibroblasts from BAY 11-7085. Inhibitor of Keap1-P-S349 p62 interaction, K67, had synergistic effect with MG132. Starvation increased p62 molecular weight, that was reversed by serum and bovine serum albumin re-feeding. Furthermore, starvation markedly induced RAD23B. Increased endo-beta-N-acetylglucosaminidase (ENGase) turnover was detected in starved synovial fibroblasts. PNGase F treatment produced faster migration p62 form in human synovial tissue extracts but starvation-like p62 form of higher molecular weight in synovial cell extracts. Co-transfection of NGLY1, with p62 or p62 mutants S349A and S349E markedly stabilized p62 expressions in HEK293 cells. Tunicamycin upregulated p62 and protected synovial fibroblasts from BAY 11-7085-induced cell death. These results showed that P-Ser349 p62 has pro-survival role in human synovial fibroblasts and that de-glycosylation events are involved in p62 turnover.
Disciplines :
Rheumatology
Author, co-author :
RELIC, Biserka ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de rhumatologie
CHARLIER, Anne ; Centre Hospitalier Universitaire de Liège - CHU > Département des Services Logistiques > Secteur gardiennage
DEROYER, Céline ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de rhumatologie
MALAISE, Olivier ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de rhumatologie
Crine, Yannick
NEUVILLE, Sophie ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de rhumatologie
GILLET, Philippe ; Centre Hospitalier Universitaire de Liège - CHU > Département de chirurgie > Service de chirurgie de l'appareil locomoteur
DE SENY, Dominique ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de rhumatologie
Malaise, Michel ; Université de Liège - ULiège > Département des sciences cliniques > Rhumatologie
Language :
English
Title :
Serum starvation raises turnover of phosphorylated p62/SQSTM1 (Serine 349), reveals expression of proteasome and N-glycanase1 interactive protein RAD23B and sensitizes human synovial fibroblasts to BAY 11-7085-induced cell death.
Dikic I. Proteasomal and Autophagic Degradation Systems. Annu Rev Biochem. 2017; 86:193-224. https://doi.org/10.1146/annurev-biochem-061516-044908.
Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett. 2016; 21:29. https://doi.org/10.1186/s11658-016-0031-z.
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol. 2004; 24:8055-68. https://doi.org/10.1128/MCB.24.18.8055-8068.2004.
Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013; 51:618-31. https://doi.org/10.1016/j.molcel.2013.08.003.
Ishii T, Yanagawa T, Kawane T, Yuki K, Seita J, Yoshida H, Bannai S. Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56(lck)-associated protein in response to oxidative stress. Biochem Biophys Res Commun. 1996; 226:456-60. https://doi.org/10.1006/bbrc.1996.1377.
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura SI, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010; 12:213-23. https://doi.org/10.1038/ncb2021.
Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD, Johansen T. p62/ SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010; 285:22576-91. https://doi.org/10.1074/jbc.M110.118976.
Tanji K, Miki Y, Ozaki T, Maruyama A, Yoshida H, Mimura J, Matsumiya T, Mori F, Imaizumi T, Itoh K, Kakita A, Takahashi H, Wakabayashi K. Phosphorylation of serine 349 of p62 in Alzheimer's disease brain. Acta Neuropathol Commun. 2014; 2:50. https://doi.org/10.1186/2051-5960-2-50.
Son YO, Pratheeshkumar P, Roy RV, Hitron JA, Wang L, Zhang Z, Shi X. Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis. J Biol Chem. 2014; 289:28660-75. https://doi.org/10.1074/jbc.M114.595496.
Saito T, Ichimura Y, Taguchi K, Suzuki T, Mizushima T, Takagi K, Hirose Y, Nagahashi M, Iso T, Fukutomi T, Ohishi M, Endo K, Uemura T, et al. P62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat Commun. 2016; 7:12030. https://doi.org/10.1038/ncomms12030.
Goode A, Long JE, Shaw B, Ralston SH, Visconti MR, Gianfrancesco F, Esposito T, Gennari L, Merlotti D, Rendina D, Rea SL, Sultana M, Searle MS, et al. Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function. Biochim Biophys Acta. 2014; 1842:992-1000. https://doi.org/10.1016/j.bbadis.2014.03.006.
Wright T, Rea SL, Goode A, Bennett AJ, Ratajczak T, Long JE, Searle MS, Goldring CE, Park BK, Copple IM, Layfield R. The S349T mutation of SQSTM1 links Keap1/ Nrf2 signalling to Paget's disease of bone. Bone. 2013; 52:699-706. https://doi.org/10.1016/j.bone.2012.10.023.
Su X, Li T, Liu Z, Huang Q, Liao K, Ren R, Lu L, Qi X, Wang M, Chen J, Zhou H, Leung ELH, Pan H, et al. Licochalcone A activates Keap1-Nrf2 signaling to suppress arthritis via phosphorylation of p62 at serine 349. Free Radic Biol Med. 2018; 115:471-83. https://doi.org/10.1016/j.freeradbiomed.2017.12.004.
Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, Gillet P, de Seny D, Malaise MG. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016; 7:23370-82. https://doi.org/10.18632/oncotarget.8042.
Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci. 2017; 18:E1865. https://doi.org/10.3390/ijms18091865.
Choi YJ, Park YJ, Park JY, Jeong HO, Kim DH, Ha YM, Kim JM, Song YM, Heo HS, Yu BP, Chun P, Moon HR, Chung HY. Inhibitory effect of mTOR activator MHY1485 on autophagy: Suppression of lysosomal fusion. PLoS One. 2012; 7:e43418. https://doi.org/10.1371/journal.pone.0043418.
Katiyar S, Li G, Lennarz WJ. A complex between peptide:N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc Natl Acad Sci U S A. 2004; 101:13774-9. https://doi.org/10.1073/pnas.0405663101.
Suzuki T, Park H, Kwofie MA, Lennarz WJ. Rad23 Provides a Link between the Png1 Deglycosylating Enzyme and the 26 S Proteasome in Yeast. J Biol Chem. 2001; 276:21601-7. https://doi.org/10.1074/jbc.M100826200.
Suzuki T, Huang C, Fujihira H. The cytoplasmic peptide:N-glycanase (NGLY1) - Structure, expression and cellular functions. Gene. 2016; 577:1-7. https://doi.org/10.1016/j.gene.2015.11.021.
Yasuda D, Nakajima M, Yuasa A, Obata R, Takahashi K, Ohe T, Ichimura Y, Komatsu M, Yamamoto M, Imamura R, Kojima H, Okabe T, Nagano T, et al. Synthesis of Keap1-phosphorylated p62 and Keap1-Nrf2 protein-protein interaction inhibitors and their inhibitory activity. Bioorg Med Chem Lett. 2016; 26:5956-9. https://doi.org/10.1016/j.bmcl.2016.10.083.
Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002; 277:42769-74. https://doi.org/10.1074/jbc.M206911200.
Wang L, Cano M, Handa JT. P62 provides dual cytoprotection against oxidative stress in the retinal pigment epithelium. Biochim Biophys Acta. 2014; 1843:1248-58. https://doi.org/10.1016/j.bbamcr.2014.03.016.
Joung I, Strominger JL, Shin J. Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain. Proc Natl Acad Sci U S A. 1996; 93:5991-5. https://doi.org/10.1073/pnas.93.12.5991.
Suzuki T, Yano K, Sugimoto S, Kitajima K, Lennarz WJ, Inoue S, Inoue Y, Emori Y. Endo-beta-N-acetylglucosaminidase, an enzyme involved in processing of free oligosaccharides in the cytosol. Proc Natl Acad Sci U S A. 2002; 99:9691-6. https://doi.org/10.1073/pnas.152333599.
Huang C, Harada Y, Hosomi A, Masahara-Negishi Y, Seino J, Fujihira H, Funakoshi Y, Suzuki T, Dohmae N, Suzuki T. Endo-β-N-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells. Proc Natl Acad Sci U S A. 2015; 112:1398-403. https://doi.org/10.1073/pnas.1414593112.
Fujihira H, Masahara-Negishi Y, Tamura M, Huang C, Harada Y, Wakana S, Takakura D, Kawasaki N, Taniguchi N, Kondoh G, Yamashita T, Funakoshi Y, Suzuki T. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene. PLoS Genet. 2017; 13:e1006696. https://doi.org/10.1371/journal.pgen.1006696.
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005; 171:603-14. https://doi.org/10.1083/jcb.200507002.
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizu shima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007; 131:1149-63. https://doi.org/10.1016/j.cell.2007.10.035.
Song P, Li S, Wu H, Gao R, Rao G, Wang D, Chen Z, Ma B, Wang H, Sui N, Deng H, Zhang Z, Tang T, et al. Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease. Protein Cell. 2016; 7:114-29. https://doi.org/10.1007/s13238-015-0230-9.
Choe JY, Jung HY, Park KY, Kim SK. Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1β expression. Rheumatology (Oxford). 2014; 53:1043-53. https://doi.org/10.1093/rheumatology/ket474.
Relic B, Benoit V, Franchimont N, Kaiser MJ, Hauzeur JP, Gillet P, Merville MP, Bours V, Malaise MG. Peroxisome proliferator-activated receptor-gamma1 is dephosphorylated and degraded during BAY 11-7085-induced synovial fibroblast apoptosis. J Biol Chem. 2006; 281:22597-604. https://doi.org/10.1074/jbc.M512807200.
Watanabe Y, Tsujimura A, Taguchi K, Tanaka M. HSF1 stress response pathway regulates autophagy receptor SQSTM1/ p62-associated proteostasis. Autophagy. 2017; 13:133-48. https://doi.org/10.1080/15548627.2016.1248018.
Dantuma NP, Heinen C, Hoogstraten D. The ubiquitin receptor Rad23: At the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst). 2009; 8:449-60. https://doi.org/10.1016/j.dnarep.2009.01.005.
Fishbain S, Prakash S, Herrig A, Elsasser S, Matouschek A. Rad23 escapes degradation because it lacks a proteasome initiation region. Nat Commun. 2011; 2:192. https://doi.org/10.1038/ncomms1194.
Krzeszinski JY, Choe V, Shao J, Bao X, Cheng H, Luo S, Huo K, Rao H. XPC promotes MDM2-mediated degradation of the p53 tumor suppressor. Mol Biol Cell. 2014; 25:213-21. https://doi.org/10.1091/mbc.E13-05-0293.
Peng B, Hodge DR, Thomas SB, Cherry JM, Munroe DJ, Pompeia C, Xiao W, Farrar WL. Epigenetic silencing of the human nucleotide excision repair gene, hHR23B, in interleukin-6-responsive multiple myeloma KAS-6/1 cells. J Biol Chem. 2005; 280:4182-7. https://doi.org/10.1074/jbc.M412566200.
Linge A, Maurya P, Friedrich K, Baretton GB, Kelly S, Henry M, Clynes M, Larkin A, Meleady P. Identification and Functional Validation of RAD23B as a Potential Protein in Human Breast Cancer Progression. J Proteome Res. 2014; 13:3212-22. https://doi.org/10.1021/pr4012156.
Watkins JF, Sung P, Prakash L, Prakash S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol. 1993; 13:7757-65. https://doi.org/10.1128/MCB.13.12.7757.
Kim I, Ahn J, Liu C, Tanabe K, Apodaca J, Suzuki T, Rao H. The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol. 2006; 172:211-9. https://doi.org/10.1083/jcb.200507149.
Suzuki T. Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med. 2016; 51:89-103. https://doi.org/10.1016/j.mam.2016.05.004.
Hirayama H, Hosomi A, Suzuki T. Physiological and molecular functions of the cytosolic peptide:N-glycanase. Semin Cell Dev Biol. 2015; 41:110-20. https://doi.org/10.1016/j.semcdb.2014.11.009.
Tomlin FM, Gerling-Driessen UIM, Liu YC, Flynn RA, Vangala JR, Lentz CS, Clauder-Muenster S, Jakob P, Mueller WF, Ordoñez-Rueda D, Paulsen M, Matsui N, Foley D, et al. Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Cent Sci. 2017; 3:1143-55. https://doi.org/10.1021/acscentsci.7b00224.
Leung L, Kwong M, Hou S, Lee C, Chan JY. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J Biol Chem. 2003; 278:48021-9. https://doi.org/10.1074/jbc.M308439200.
Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, Hayes JD, Yamamoto M. Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem. 2008; 283:33554-62. https://doi.org/10.1074/jbc.M804597200.
Michou L, Morissette J, Gagnon ER, Marquis A, Dellabadia M, Brown JP, Siris ES. Novel SQSTM1 mutations in patients with Paget's disease of bone in an unrelated multiethnic American population. Bone. 2011; 48:456-60. https://doi.org/10.1016/j.bone.2010.11.004.
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr Rev. 2013; 34:501-24. https://doi.org/10.1210/er.2012-1034.
Hosomi A, Fujita M, Tomioka A, Kaji H, Suzuki T. Identification of PNGase-dependent ERAD substrates in Saccharomyces cerevisiae. Biochem J. 2016; 473:3001-12. https://doi.org/10.1042/BCJ20160453.
Zustiak MP, Jose L, Xie Y, Zhu J, Betenbaugh MJ. Enhanced transient recombinant protein production in CHO cells through the co-transfection of the product gene with Bcl-xL. Biotechnol J. 2014; 9:1164-74. https://doi.org/10.1002/biot.201300468.
Maher P. Proteasome inhibitors prevent oxidative stress-induced nerve cell death by a novel mechanism. Biochem Pharmacol. 2008; 75:1994-2006. https://doi.org/10.1016/j.bcp.2008.02.008.
Park JS, Oh SY, Lee DH, Lee YS, Sung SH, Ji HW, Lee MJ, Lee YH, Rhee SG, Bae SH. p62/SQSTM1 is required for the protection against endoplasmic reticulum stress-induced apoptotic cell death. Free Radic Res. 2016; 50:1408-21. https://doi.org/10.1080/10715762.2016.1253073.
Milan E, Perini T, Resnati M, Orfanelli U, Oliva L, Raimondi A, Cascio P, Bachi A, Marcatti M, Ciceri F, Cenci S. A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy. 2015; 11:1161-78. https://doi.org/10.1080/15548627.2015.1052928.
Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL, Wong MW, Lai ZQ, Lin ZX, Dunn K, Sanderson CM, Alghanem AF, Cross MJ, Ellis EC, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity - Implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015; 78:202-12. https://doi.org/10.1016/j.freeradbiomed.2014.11.003.
Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 2018; 416:124-37. https://doi.org/10.1016/j.canlet.2017.12.025.
Ahmed AS, Li J, Ahmed M, Hua L, Yakovleva T, Ossipov MH, Bakalkin G, Stark A. Attenuation of pain and inflammation in adjuvant-induced arthritis by the proteasome inhibitor MG132. Arthritis Rheum. 2010; 62:2160-9. https://doi.org/10.1002/art.27492.
Lee SW, Kim JH, Park YB, Lee SK. Bortezomib attenuates murine collagen-induced arthritis. Ann Rheum Dis. 2009; 68:1761-7. https://doi.org/10.1136/ard.2008.097709.
Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L, Mayer RJ, Lee MS, Yamamoto M, Waguri S, Tanaka K, et al. Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem. 2014; 289:24944-55. https://doi.org/10.1074/jbc.M114.580357.
Venanzi F, Shifrin V, Sherman M, Gabai V, Kiselev O, Komissarov A, Grudinin M, Shartukova M, Romanovskaya-Romanko EA, Kudryavets Y, Bezdenezhnykh N, Lykhova O, Semesyuk N, et al. Broad-spectrum anti-tumor and anti-metastatic DNA vaccine based on p62-encoding vector. Oncotarget. 2013; 4:1829-35. https://doi.org/10.18632/oncotarget.1397.
Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A. 2002; 99:16899-903. https://doi.org/10.1073/pnas.242603899.
Emi N, Friedmann T, Yee JK. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol. 1991; 65:1202-7.