[en] Sea ice in part controls surface water properties and the ocean-atmosphere exchange of greenhouse gases at high latitudes. In sea ice gas exists dissolved in brine and as air bubbles contained in liquid brine inclusions, or as bubbles trapped directly within the ice matrix. Current research on gas dynamics within the ocean-sea ice-atmosphere interface has been based on the premise that brine with dissolved air becomes supersaturated with respect to the atmosphere during ice growth. Based on Henry’s Law, gas bubbles within brine should grow when brine reaches saturation during cooling, given that the total partial pressure of atmospheric gases is above the implicit pressure in brine of 1 atm. Using high-resolution light microscopy time series imagery of gas bubble evolution inside discrete brine pockets, we observed bubbles shrinking during cooling events in response to the development of freezing pressure above 3 atm. During warming of discrete brine pockets, existing bubbles expand and new bubbles nucleate in response to depressurization. Pressure variation within these inclusions has direct impacts on aqueous-gaseous equilibrium, indicating that Henry's Law at a constant pressure of 1 atm is inadequate to assess the partitioning between dissolved and gaseous fractions of gas in sea ice. This new evidence of pressure build-up in discrete brine inclusions controlling the solubility of gas and nucleation of bubbles in these inclusions has the potential to affect the transport pathways of air bubbles and dissolved gases within sea ice-ocean-atmosphere interface and modifies brine biochemical properties.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Crabeck, Odile
Galley, R.J.
Mercury, L.
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Tison, J.-L.
Rysgaard, S.
Language :
English
Title :
Evidence of freezing pressure in sea ice discrete brine inclusions and its impact on aqueous-gaseous equilibrium
Assur, A. (1960). Composition of sea ice and its tensile strength. SIPRE research report 44, U.S. Army snow ice and permafrost research establishment, Corps of Engineers, Wilmette, Illinois, December 1960.
Bennington, K. O. (1963). Some crystal growth features of sea ice. Journal of Glaciology, 4(36), 669–688. https://doi.org/10.1017/S0022143000028306
Butt, H. J., Graf, K., & Kappl, M. (2004). Chapter 3: Thermodynamics of interfaces. In Physics and chemistry of interfaces in: Physics and chemistry of interfaces (pp. 26–41). https://doi.org/10.1002/3527602313
Cox, G. F. N., & Weeks, C. F. (1983). Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29(102), 306–316. https://doi.org/10.1017/S0022143000008364
Crabeck, O., Delille, B., Rysgaard, S., Thomas, D. N., Geilfus, N. X., Else, B., & Tison, J. L. (2014). First “in situ” determination of gas transport coefficients (, and) from bulk gas concentration measurements (O2, N2, Ar) in natural sea ice. Journal of Geophysical Research: Oceans, 119, 6655–6668. https://doi.org/10.1002/2014JC009849
Crabeck, O., Delille, B., Thomas, D., Geilfus, N. X., Rysgaard, S., & Tison, J. L. (2014). CO2 and CH4 in sea ice from a subarctic fjord under influence of riverine input. Biogeosciences, 11(23), 6525–6538. https://doi.org/10.5194/bg-11-6525-2014
Crabeck, O., Galley, R. J., Delille, B., Else, B. G., Geilus, N. X., Lemes, M., Des Roches, M., Francus, P., Tison, J.-L., & Rysgaard, S. (2016). Imaging air volume fraction in sea ice using non-destructive X-ray tomography. The Cryosphere, 10(3), 1125–1145. https://doi.org/10.5194/tc-10-1125-2016
Eide, L. I., & Martin, S. (1975). The formation of brine drainage features in young sea ice. Journal of Glaciology, 14(70), 137–154. https://doi.org/10.1017/S0022143000013460
Else, B. G. T., Rysgaard, S., Attard, K., Campbell, K., Crabeck, O., Galley, R. J., Geilfus, N. X., Lemes, M., Lueck, R., Papakyriakou, T., & Wang, F. (2015). Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool. Cold Regions Science and Technology, 119, 158–169. https://doi.org/10.1016/j.coldregions.2015.06.018
Epstein, P. S., & Plesset, M. S. (1950). On the stability of gas bubbles in liquid-gas solutions. The Journal of Chemical Physics, 18(11), 1505–1509. https://doi.org/10.1063/1.1747520
Fine, R. A., & Millero, F. J. (1973). Compressibility of water as a function of temperature and pressure. The Journal of Chemical Physics, 59(10), 5529–5536. https://doi.org/10.1063/1.1679903
Fofonof, N. P., & Millard, R. C. Jr. (1983). Algorithms for computation of fundamental properties of seawater, UNESCO technical papers in marine science 44, UNESCO/SCOR/ICES/IAPSO joint panel on oceanographic tables and standards and SCOR working group 51, Paris, France.
Garcia, H. E., & Gordon, L. I. (1992). Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography, 37(6), 1307–1312. https://doi.org/10.4319/lo.1992.37.6.1307
Golden, K. M., Ackley, S. F., & Lytle, V. I. (1998). The percolation phase transition in sea ice. Science, 282(5397), 2238–2241. https://doi.org/10.1126/science.282.5397.2238
Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J., & Zhu, J. (2007). Thermal evolution of permeability and microstructure in sea ice. Geophysical Research Letters, 34, L16501. https://doi.org/10.1029/2007GL030447
Hamme, R. C., & Emmerson, S. R. (2004). The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Research Part I: Oceanographic Research Papers, 51(11), 1517–1528. https://doi.org/10.1016/j.dsr.2004.06.009
Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L., & Lorrain, R. (1998). Segregation of solutes and gases in experimental freezing of dilute solutions: Implications for natural glacial systems. Geochimica et Cosmochimica Acta, 62(23–24), 3637–3655. https://doi.org/10.1016/S0016-7037(98)00268-3
King, W. D., & Fletcher, N. H. (1973). Pressures and stresses in freezing water drops. Journal of Physics D: Applied Physics, 6(18), 2157–2173. https://doi.org/10.1088/0022-3727/6/18/302
Knight, C. A. (1962). Polygonization of aged sea ice. The Journal of Geology, 70(2), 240–246. https://doi.org/10.1086/626813
Kotovitch, M., Moreau, S., Zhou, J., Vancoppenolle, M., Dieckmann, G. S., Evers, K. U., Van der Linden, F., Thomas, D. N., Tison, J.-L., & Delille, B. (2016). Air-ice carbon pathways inferred from a sea ice tank experiment. Elementa: Science of the Anthropocene, 4, 000112. https://doi.org/10.12952/journal.elementa.000112
Lake, R. A., & Lewis, E. L. (1970). Salt rejection by sea ice during growth. Journal of Geophysical Research, 75(3), 583–597. https://doi.org/10.1029/JC075i003p00583
Light, B., Maykut, G. A., & Grenfell, T. C. (2003). Effects of temperature on the microstructure of first-year Arctic sea ice. Journal of Geophysical Research, 108, 3051. https://doi.org/10.1029/2001JC000887
Marion, G., Mironenko, M., & Roberts, M. (2010). FREZCHEM: A geochemical638 model for cold aqueous solutions. Computers and Geosciences, 36, 10–15.
Mercury, L., Azaroual, M., Zeyen, H., & Tardy, Y. (2003). Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochimica et Cosmochimica Acta, 67(10), 1769–1785. https://doi.org/10.1016/S0016-7037(02)01406-0
Mercury, L., Pinti, D. L., & Zeyen, H. (2004). The effect of the negative pressure of capillary water on atmospheric noble gas solubility in ground water and palaeotemperature reconstruction. Earth and Planetary Science Letters, 223(1–2), 147–161. https://doi.org/10.1016/j.epsl.2004.04.019
Moreau, S., Vancoppenolle, M., Zhou, J., Tison, J. L., Delille, B., & Goosse, H. (2014). Modelling argon dynamics in first-year sea ice. Ocean Modelling, 73, 1–18. https://doi.org/10.1016/j.ocemod.2013.10.004
Niedrauer, T. M. & Martin, S. (1979). An experimental study of brine drainage and convection in young sea ice, Journal of Geophysical Research, 84(C3): 1176-1186, paper number 8C1208.
Notz, D., & Worster, M. G. (2008). In situ measurements of the evolution of young sea ice. Journal of Geophysical Research, 113, C03001. https://doi.org/10.1029/2007JC0004333
Notz, D., & Worster, M. G. (2009). Desalination processes of sea ice revisited. Journal of Geophysical Research, 114, C05006. https://doi.org/10.1029/2008JC004885
Oertling, A. B., & Watts, R. G. (2004). Growth of and brine drainage from NaCl-H2O freezing: A simulation of young sea ice. Journal of Geophysical Research, 109, C04013. https://doi.org/10.1029/2001JC001109
Perovich, D. K., & Gow, A. J. (1996). A quantitative description of sea ice inclusions. Journal of Geophysical Research, 101(C8), 18,327–18,343. https://doi.org/10.1029/96JC01688
Sharqawy, M. H., Lienhard, J. H., & Zubair, S. M. (2010). Thermophysical properties of seawater: A review of existing correlations and data. Desalination and Water Treatment, 16, 354–380. https://doi.org/10.5004/dwt.2010.1079
Sigunov, Y. A., & Samylova, Y. A. (2006). Pressure growth dynamics during freezing of a closed volume of water with dissolved gases. Journal of Applied Mechanics and Technical Physics, 47(6), 842–848. https://doi.org/10.1007/s10808-006-0123-z
Tison, J. L., Delille, B., & Papadimitriou, S. (2017). Gases in sea ice, in: Sea ice, Thomas, D. N. (Ed.). (2017), John Wiley & Sons, 433–471.
Tison, J. L., Haas, C., Gowing, M. M., Sleewaegen, S., & Bernard, A. (2002). Tank study of physico-chemical controls on gas content and composition during growth of young sea ice. Journal of Glaciology, 48(161), 177–191. https://doi.org/10.3189/172756502781831377
Tsurikov, V. L. (1979). The formation and composition of the gas content of sea ice. Journal of Glaciology, 22(86), 67–81. https://doi.org/10.1017/S0022143000014064
Untersteiner, N. (1968). Natural desalination and equilibrium salinity profile of perennial sea ice. Journal of Geophysical Research, 73(4), 1251–1257. https://doi.org/10.1029/JB073i004p01251
Vancoppenolle, M., Goosse, H., De Montety, A., Fichefet, T., Tremblay, B., & Tison, J. L. (2010). Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica. Journal of Geophysical Research: Oceans, 115(C2), https://doi.org/10.1029/2009JC005369.
Visagie, P. J. (1969). Pressures inside freezing water drops. Journal of Glaciology, 8(53), 301–309. https://doi.org/10.1017/S0022143000031270
Vreme, A., Pouligny, B., Nadal, F., & Liger-Belair, G. (2015). Does shaking increase the pressure inside a bottle of champagne? Journal of Colloid and Interface Science, 439, 42–53. https://doi.org/10.1016/j.jcis.2014.10.008
Weeks, W. F., & Ackley, S. (1986). The growth, structure and properties of sea ice. In N. Untersteiner (Ed.), The Geophysics of Sea ice (pp. 9–164). New York, NY: Plenum. https://doi.org/10.1007/978-1-4899-5352-0_2
Weissenberger, J., Dieckmann, G., Gradinger, R., & Spindler, M. (1992). Sea ice: A cast technique to examine and analyze brine pockets and channel structure. Limnology and Oceanography, 37(1), 179–183. https://doi.org/10.4319/lo.1992.37.1.0179
Wildeman, S., Sterl, S., Sun, C., & Lohse, D. (2017). Fast dynamics of water droplets freezing from the outside in. Physical Review Letters, 118(8), 084101. https://doi.org/10.1103/PhysRevLett.118.084101
World Meteorological Organization. WMO sea-ice nomenclature. Terminology, codes and illustrated glossary. Edition (1970). Geneva, Secretariat of the World Meteorological Organization, 1970.[ix], 147 p. [including 175 photos]+ corrigenda slip.(WMO/OMM/BMO, no. 259, TP. 145.). Journal of Glaciology, 11(61), 148–149.
Zhou, J., Delille, B., Eicken, H., Vancoppenolle, M., Brabant, F., Carnat, G., Geilfus, N. X., Papakyriakou, T., Heinesch, B., & Tison, J. L. (2013). Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons. Journal of Geophysical Research: Oceans, 118, 3172–3189. https://doi.org/10.1002/jgrc.20232