This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
All documents in ORBi are protected by a user license.
Keywords :
3D Point Cloud; semantic segmentation; procedural modelling; voxel; 3D modelling; cognition systems; Point Cloud Database; feature extraction; PCA; ModelNet10; Nuage de points; segmentation sémantique; modélisation procédurale; modélisation 3D; systèmes cognitifs; Base de données 3D; Extraction d'information
Abstract :
[en] 3D models derived from point clouds are useful in various shapes to optimize the trade-off between precision and geometric complexity. They are defined at different granularity levels according to each indoor situation. In this article, we present an integrated 3D semantic reconstruction framework that leverages segmented point cloud data and domain ontologies. Our approach follows a part-to-whole conception which models a point cloud in parametric elements usable per instance and aggregated to obtain a global 3D model. We first extract analytic features, object relationships and contextual information to permit better object characterization. Then, we propose a multi-representation modelling mechanism augmented by automatic recognition and fitting from the 3D library ModelNet10 to provide the best candidates for several 3D scans of furniture. Finally, we combine every element to obtain a consistent indoor hybrid 3D model. The method allows a wide range of applications from interior navigation to virtual stores.
Scopus citations®
without self-citations
33