[en] In this abstract, we propose an original CAD system consisting in the combination of
brain parcelling, ensemble of trees methods, and selection of (groups of) features using
the importance scores embedded in tree-based methods. Indeed, on top of their ease
of use and accuracy without ad hoc parameter tuning, tree ensemble methods such as
random forests (RF) (Breiman, 2001) or extremely randomized trees (ET) (Geurts et
al., 2006) provide interpretable results in the form of feature importance scores. We also
compare the performance and interpretability of our proposed method to standard RF
and ET approaches, without feature selection, and to multiple kernel learning (MKL). The latter was shown to be an efficient method notably capable of
dealing with anatomically defined regions of the brain by the use of multiple kernels.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Wehenkel, Marie ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Bastin, Christine ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et révalid. cogn.
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Phillips, Christophe ; Université de Liège - ULiège > Centre de recherches du cyclotron
Language :
English
Title :
Computer Aided Diagnosis System Based on Random Forests for the Prognosis of Alzheimer’s Disease
Publication date :
April 2018
Event name :
1st Human Brain Project Student Conference
Event organizer :
Human Brain Project
Event place :
Vienna, Austria
Event date :
from 08-02-2017 to 10-02-2017
Audience :
International
Main work title :
1st HBP Student Conference - Transdisciplinary Research Linking Neuroscience, Brain Medicine and Computer Science