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Introduction: Over the last decade, a large number of computer aided diagnosis (CAD)
systems have been developed by researchers in neuroimaging to study neurodegenerative
diseases or other kinds of brain disorders [1,2,3]. Briefly, machine-learning (ML) techniques help
doctors to distinguish groups of people (e.g. healthy vs. diseased) by automatically identifying
characteristics in the images that discriminate the groups. The challenge in the modelling of CAD
systems is not only to perform well in terms of prediction but also to provide relevant information
about the diagnosis, such as regions of interest in the brain that are affected by the disease.

In this abstract, we propose an original CAD system consisting in the combination of brain
parcelling, ensemble of trees methods, and selection of (groups of) features using the importance
scores embedded in tree-based methods. Indeed, on top of their ease of use and accuracy
without ad hoc parameter tuning, tree ensemble methods such as random forests (RF) [4] or
extremely randomized trees (ET) [5] provide interpretable results in the form of feature importance
scores. We also compare the performance and interpretability of our proposed method to
standard RF and ET approaches, without feature selection, and to multiple kernel learning (MKL)
[6]. The latter was shown to be an efficient method notably capable of dealing with anatomically
defined regions of the brain by the use of multiple kernels.

Methods: Our CAD system is designed to discriminate older adults with Mild Cognitive
Impairments (MCI) in terms of their clinical outcome 4 years later, based on their current PET
images. More precisely, 45 individuals presenting mild cognitive impairments (MCI) at the
beginning of the study were followed during 4 years and their diagnostic updated based on
neuropsychology tests (no further imaging was performed). Among those subjects, 22 patients
were eventually diagnosed with Alzheimer’s disease (AD) in the course of the study. These were
labelled “MCI converters” (MClIc). The others showed no cognitive decline and are thus
denominated stable MCI (sMCI). The aim of such a CAD system is thus to predict the likelihood of
progression to dementia based on the images acquired before the onset of the disease.

The PET images were pre-processed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/).
This included spatial normalization to the MNI reference space and intensity normalization by the
cerebellar intensities. Then a feature vector for each individual was built by extracting the voxel
values within the brain volume.

The first step of our diagnosis system consists in learning a tree ensemble model and attributing a
score per AAL region [7] from the mean of the voxel importance scores in each region. In a
second step, the k best regions according to these scores are selected and used to learn a new
model (with k set to 10 in our experiments). This approach is thus a combination of group
selection and ensemble methods. The procedure used for its assessment is summarized in
Figure 1. We evaluate it with a “leave 10% of subjects per group out” cross validation (CV)
procedure for RF and ET respectively with default parameter values (M = 500 trees and K= \N
where N is the total number of features). Standard RF and ET (without feature selection) and
MKL, all with default parameter setting, are also assessed for comparison with the same CV
procedure. As RF and ET involve randomization, experiments were repeated ten times, called
runs here under, to obtain mean and standard deviation of performance metrics.

To interpret the results of the proposed method and to have insights about regions involved in the
prognosis, we compute importance scores for each ensemble of trees. We then average the
scores over the folds and the runs and we subsequently compute a score for each brain region.
For MKL, we use the weights attributed to each brain area. Finally, as our proposed method
embeds a selection process, we also analyze the frequency of selection of brain areas over the
folds and the runs to have additional information about important regions.



Algorithm Protocol of model assessment.
Require: Divide the learning set (LS) into X folds.
fori=1: X do
Remove the i*" fold from LS.
Fit an ensemble of trees from the learning set LS\ {i‘" fold} to obtain importance scores.
Compute a score Wg for each set of features.
Rank the groups of features and choose the ten best groups.
Build an ensemble model using the ten groups and the set LS\ {i*" fold}.
Test the model on the i*" fold.
end for

Figure 1: Protocol to assess the proposed CAD system.

Results: Table 1 summarizes the accuracy, sensitivity and specificity obtained with each
method. MKL is less efficient in terms of accuracy than tree-based approaches. Moreover, we
observe that extremely randomized trees, which include supplementary randomization, provide
better accuracy than RF. Our proposed CAD system obtains also a better accuracy with ET than
RF. The preliminary step of group selection slightly increases mean values of accuracies and
sensitivities of ensemble methods and decreases the variance caused by randomization with a
large number of features (more or less 200 000 voxels to consider).

Table 1: Summary of method performance and corresponding p-values (obtained using a permutation
test with 100 repetitions). The asterisk indicates a p — value < 0.05. GS abbreviation is used for
group selection.

Method Accuracy (%) Sensitivity (%) Specificity (%)
MKL 68.89 (0.02)* 59.09 (0.23) 78.26 (0.01)*

RF 77.11£2.58(0.01)* 71.82+£4.18(0.02)* 82.17+2.47(0.03)*
ET 80.22 £3.22 (0.01)* 77.73 £5.85(0.01)* 82.61+4.10(0.01)*
GSandRF  78.00+1.26 (0.01)* 76.36 +1.92 (0.01)* 79.57 +2.93 (0.01)*
GSand ET  80.44 +1.75 (0.01)* 78.18 +£3.59 (0.01)* 82.61+0 (0.01)*

In terms of interpretability with weights for MKL and importance scores for the ensemble methods,
we can observe in Table 2 the listing of the ten most contributing regions for each method for the
discrimination between MCIc and sMCI. The areas TemporalMidR, AngularR and TemporalMidL
are common to the five models. Moreover, ParietallnfR, Vermis7 and TemporallnfR are identified
among the most important by each of the tree-based methods. Finally, we analyse the regions
that have been selected the most frequently over the folds and the runs during the selection
process of our procedure. For RF, in order of decreasing frequency, the ten most frequent are
TemporalMidR, AngularR, ParietallnfR, TemporalMidL, TemporallnfR, CuneusL, Vermis?,
TemporallnfL, Cerebelum6R and Vermis8 whereas ET identifies TemporalMidR, AngularR,
TemporalMidL, ParietallnfR, TemporallnfR, Vermis7, TemporallnfL, Cerebelum6R, Vermis8,
Vermis6 as the first ten. Nevertheless, the frequency of selection for the last three listed areas for
both methods is at most half the time. Given this information, those regions should likely not be
considered as informative to decide if an individual will convert to AD within four years following
the start of cognitive impairments.



Table 2: Ranking of the first ten most contributing regions of AAL brain atlas.

Rk Method

MKL RF ET GS and RF GS and ET
1 TemporalMidR AngularR TemporalMidR  AngularR TemporalMidR
2 AngularR TemporalMidR  AngularR TemporalMidR  AngularR
3 Vermis6 ParietalInfR TemporalMidL.  ParietallnfR ParietalInfR
4 ParietalSupR TemporalMidL  ParietallnfR TemporalMidLL  TemporalMidL
5 TemporalMidLL Vermis7 Vermis7 CuneusL Vermis7
6 FrontalSupMedialR ~ CuneusL TemporallnfR Cerebelum10L  TemporallnfR
7 Vermis8 TemporallnfR TemporallnfLL Vermis7 Cerebelum6R
8 OlfactoryLL Vermis§ Vermis8 TemporallnfR Cerebelum10L
9 Cerebelum10L TemporallnfL. Vermis6 ThalamusL. TemporallnfLL
10  ThalamusL TemporalSupR  Cerebelum6R Cerebelum6R Vermis6

Discussion: We have shown that, at least for the data and problem considered here, tree-
based ensemble methods are competitive methods and that they can outperform other advanced
methods like MKL. They exhibit better accuracy, sensitivity and specificity and provide good
interpretability through importance scores. Furthermore, group selection combined with ensemble
of trees adds more insight about the regions that are relevant to diagnose a MCI patient who is
likely to develop Alzheimer’s disease within four years. Indeed, group selection enables us to
study the frequency of selection of a brain area among the whole set. It should also be noted that
the results regarding the most involved regions are coherent with studies showing that MCI
patients who are about to develop Alzheimer’s disease exhibit more hypometabolic
temporoparietal areas than MCI patients who remain stable in the next few years [8]. Another
advantage of feature selection is that it improves the sensitivity of the diagnosis, which is the
guantity relative to true positive (i.e. MCI converters), and largely reduces the variance induced by
the initial huge number of features and the randomization process. Finally, the ET approach, with
or without group selection, gives rise to accuracy slightly higher than that of RF. Nevertheless,
supplementary tests are needed to assess if the differences of accuracy between the distinct
methods are statistically significant.

To conclude, we show that using group selection combined with ensemble of trees compose a
good CAD system which can help making a correct early prognosis of people suffering of mild
cognitive impairments.
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