[en] We report here the synthesis of 7-phenoxy-
substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides
and their evaluation as AMPA receptor positive allosteric
modulators (AMPApams). The impact of substitution on the
phenoxy ring and on the nitrogen atom at the 4-position was
examined. At GluA2(Q) expressed in HEK293 cells (calcium
flux experiment), the most potent compound was 11m (4-
cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-1,2,4-ben-
zothiadiazine 1,1-dioxide, EC50 = 2.0 nM). The Hill coefficient
in the screening and the shape of the dimerization curve in
small-angle X-ray scattering (SAXS) experiments using isolated
GluA2 ligand-binding domain (GluA2-LBD) are consistent
with binding of one molecule of 11m per dimer interface, contrary to most benzothiadiazine dioxides developed to date. This observation was confirmed by the X-ray structure of 11m bound to GluA2-LBD and by NMR. This is the first benzothiadiazine dioxide AMPApam to reach the nanomolar range.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Goffin, Eric ✱; Université de Liège - ULiège > GIGA-Research
Drapier, Thomas ✱; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Probst Larsen, Anja
Geubelle, Pierre ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Ptak, Christopher P.
Laulumaa, Saara
Rovinskaja, Karoline
Gilissen, Julie
De Tullio, Pascal ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Olsen, Lars
Frydenvang, Karla
Pirotte, Bernard ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Hanson, Julien ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Oswald, Robert E.
Sandholm Kastrup, Jette
Francotte, Pierre ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S. F. The glutamate receptor ion channels Pharmacol. Rev. 1999, 51, 7-61
Traynelis, S. F.; Wollmuth, L. P.; McBain, C. J.; Menniti, F. S.; Vance, K. M.; Ogden, K. K.; Hansen, K. B.; Yuan, H.; Myers, S. J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function Pharmacol. Rev. 2010, 62, 405-496 10.1124/pr.109.002451
Huganir, R. L.; Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years Neuron 2013, 80, 704-717 10.1016/j.neuron.2013.10.025
Lynch, G.; Palmer, L. C.; Gall, C. M. The likelihood of cognitive enhancement Pharmacol., Biochem. Behav. 2011, 99, 116-129 10.1016/j.pbb.2010.12.024
Partin, K. M. AMPA receptor potentiators: from drug design to cognitive enhancement Curr. Opin. Pharmacol. 2015, 20, 46-53 10.1016/j.coph.2014.11.002
Jourdi, J.; Hsu, Y.-T.; Zhou, M.; Qin, Q.; Bi, X.; Baudry, M. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA Transl J. Neurosci. 2009, 29, 8688-8697 10.1523/JNEUROSCI.6078-08.2009
Clarkson, A. N.; Overman, J. J.; Zhong, S.; Mueller, R.; Lynch, G.; Carmichael, S. T. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke J. Neurosci. 2011, 31, 3766-3775 10.1523/JNEUROSCI.5780-10.2011
Gan, Q.; Salussolia, C. L.; Wollmuth, L. P. Assembly of AMPA receptors: mechanisms and regulation J. Physiol. 2015, 593, 39-48 10.1113/jphysiol.2014.273755
Sager, C.; Terhag, J.; Kott, S.; Hollmann, M. C-terminal domains of transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor Function J. Biol. Chem. 2009, 284, 32413-32424 10.1074/jbc.M109.039891
Arai, A. C.; Kessler, M.; Rodgers, G.; Lynch, G. Effects of the Potent Ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466 Mol. Pharm. 2000, 58, 802-813
Ptak, C. P.; Hsieh, C. L.; Weiland, G. A.; Oswald, R. E. Role of stoichiometry in the dimer-stabilizing effect of ampa receptor allosteric modulators ACS Chem. Biol. 2014, 9, 128-133 10.1021/cb4007166
Ptak, C. P.; Ahmed, A. H.; Oswald, R. E. Probing the allosteric modulator binding site of GluR2 with thiazide derivatives Biochemistry 2009, 36, 8594-8602
Pirotte, B.; Francotte, P.; Goffin, E.; de Tullio, P. AMPA receptor positive allosteric modulators: a patent review Expert Opin. Ther. Pat. 2013, 23, 615-628 10.1517/13543776.2013.770840
Citti, C.; Battisti, U. M.; Cannazza, G.; Jozwiak, K.; Stasiak, N.; Puja, G.; Ravazzini, F.; Ciccarella, G.; Braghiroli, D.; Parenti, C.; Troisi, L.; Zoli, M. 7-Chloro-5-(furan-3-yl)-3-methyl-4H-benzo[e][1,2,4]thiadiazine 1,1-dioxide as positive allosteric modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. the end of the unsaturated-inactive paradigm? ACS Chem. Neurosci. 2016, 7, 149-160 10.1021/acschemneuro.5b00257
Battisti, U. M.; Citti, C.; Rastelli, G.; Pinzi, L.; Puja, G.; Ravazzini, F.; Ciccarella, G.; Braghiroli, D.; Cannazza, G. An unexpected reversal in the pharmacological stereoselectivity of benzothiadiazine AMPA positive allosteric modulators MedChemComm 2016, 7, 2410-2417 10.1039/C6MD00440G
Krintel, C.; Francotte, P.; Pickering, D. S.; Juknaitė, L.; Pøhlsgaard, J.; Olsen, L.; Frydenvang, K.; Goffin, E.; Pirotte, B.; Kastrup, J. S. Enthalpy-entropy compensation in the binding of modulators at ionotropic glutamate receptor GluA2 Biophys. J. 2016, 110, 2397-2406 10.1016/j.bpj.2016.04.032
Larsen, A. P.; Francotte, P.; Frydenvang, K.; Tapken, D.; Goffin, E.; Fraikin, P.; Caignard, D. H.; Lestage, P.; Danober, L.; Pirotte, B.; Kastrup, J. S. Synthesis and pharmacology of mono-, di-, and trialkyl-substituted 7-chloro-3,4-dihydro-2h-1,2,4-benzothiadiazine 1,1-dioxides combined with x-ray structure analysis to understand the unexpected structure-activity relationship at AMPA receptors ACS Chem. Neurosci. 2016, 7, 378-390 10.1021/acschemneuro.5b00318
Cordi, A.; Desos, P.; Lestage, P. N. Benzothia(dia)zine derivatives and their use as ampa modulators. U.S. Patent WO03053947 (A1), 2003.
Francotte, P.; de Tullio, P.; Goffin, E.; Dintilhac, G.; Graindorge, E.; Fraikin, P.; Lestage, P.; Danober, L.; Thomas, J.-Y.; Caignard, D.-H.; Pirotte, B. Design, synthesis, and pharmacology of novel 7-substituted 3,4-dihydro-2h-1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of AMPA receptors J. Med. Chem. 2007, 50, 3153-3157 10.1021/jm070120i
Nørholm, A. B.; Francotte, P.; Goffin, E.; Botez, I.; Danober, L.; Lestage, P.; Pirotte, B.; Kastrup, J. S.; Olsen, L.; Oostenbrink, C. Thermodynamic characterization of new positive allosteric modulators binding to the glutamate receptor A2 ligand-binding domain: combining experimental and computational methods unravels differences in driving forces J. Chem. Inf. Model. 2014, 54, 3404-3416 10.1021/ci500559b
Francotte, P.; Nørholm, A. B.; Deva, T.; Olsen, L.; Frydenvang, K.; Goffin, E.; Fraikin, P.; de Tullio, P.; Challal, S.; Thomas, J. Y.; Iop, F.; Louis, C.; Botez-Pop, I.; Lestage, P.; Danober, L.; Kastrup, J. S.; Pirotte, B. positive allosteric modulators of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid receptors belonging to 4-cyclopropyl-3,4-dihydro-2h-1,2,4-pyridothiadiazine dioxides and diversely chloro-substituted 4-cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides J. Med. Chem. 2014, 57, 9539-9553 10.1021/jm501268r
Weiss, J. N. The Hill equation revisited: uses and misuses FASEB J. 1997, 11, 835-841
Nørholm, A. B.; Francotte, P.; Olsen, L.; Krintel, C.; Frydenvang, K.; Goffin, E.; Challal, S.; Danober, L.; Botez-Pop, I.; Lestage, P.; Pirotte, B.; Kastrup, J. S. Synthesis, pharmacological and structural characterization, and thermodynamic aspects of GluA2-positive allosteric modulators with a 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide scaffold J. Med. Chem. 2013, 56, 8736-8745 10.1021/jm4012092
Petoukhov, M. V.; Franke, D.; Shkumatov, A. V.; Tria, G.; Kikhney, A. G.; Gajda, M.; Gorba, C.; Mertens, H. D.; Konarev, P. V.; Svergun, D. I. New developments in the ATSAS program package for small-angle scattering data analysis J. Appl. Crystallogr. 2012, 45, 342-350 10.1107/S0021889812007662
Sun, Y.; Olson, R.; Horning, M.; Armstrong, N.; Mayer, M.; Gouaux, E. Mechanism of glutamate receptor desensitization Nature 2002, 417, 245-253 10.1038/417245a
Ahmed, A. H.; Ptak, C. P.; Oswald, R. E. Molecular mechanism of flop selectivity and subsite recognition for an AMPA receptor allosteric modulator: structures of GluA2 and GluA3 in complexes with PEPA Biochemistry 2010, 49, 2843-2850 10.1021/bi1000678
Dunitz, J. D.; Taylor, R. Organic Fluorine hardly ever accepts hydrogen bonds Chem.-Eur. J. 1997, 3, 89-98 10.1002/chem.19970030115
Francotte, P.; Goffin, E.; Fraikin, P.; Lestage, P.; Van Heugen, J.-C.; Gillotin, F.; Danober, L.; Thomas, J.-Y.; Chiap, P.; Caignard, D.-H.; Pirotte, B.; De Tullio, P. New fluorinated 1,2,4-benzothiadiazine 1,1-dioxides: discovery of an orally active cognitive enhancer acting through potentiation of the 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid receptors J. Med. Chem. 2010, 53, 1700-1711 10.1021/jm901495t
Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. Halogen bonding: the σ-hole J. Mol. Model. 2007, 13, 291-296 10.1007/s00894-006-0130-2
Politzer, P.; Murray, J. S.; Clark, T. Halogen bonding: an electrostatically-driven highly directional noncovalent interaction Phys. Chem. Chem. Phys. 2010, 12, 7748-7757 10.1039/c004189k
Krintel, C.; Frydenvang, K.; Olsen, L.; Kristensen, M. T.; de Barrios, O.; Naur, P.; Francotte, P.; Pirotte, B.; Gajhede, M.; Kastrup, J. S. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2 Biochem. J. 2012, 441, 173-178 10.1042/BJ20111221
Skou, S.; Gillilan, R. E.; Ando, N. Synchrotron-based small-angle X-ray scattering of proteins in solution Nat. Protoc. 2014, 9, 1727-1739 10.1038/nprot.2014.116
Acerbo, A. S.; Cook, M. J.; Gillilan, R. E. Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution J. Synchrotron Radiat. 2015, 22, 180-186 10.1107/S1600577514020360
Nielsen, S. S.; Møller, M.; Gillilan, R. E. High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell J. Appl. Crystallogr. 2012, 45, 213-223 10.1107/S0021889812000957
Hopkins, J. B.; Gillilan, R. E.; Skou, S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis J. Appl. Crystallogr. 2017, 50, 1545-1553 10.1107/S1600576717011438
Ursby, T.; Unge, J.; Appio, R.; Logan, D. T.; Fredslund, F.; Svensson, C.; Larsson, K.; Labrador, A.; Thunnissen, M. M. G. M. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory J. Synchrotron Radiat. 2013, 20, 648-653 10.1107/S0909049513011734
Evans, P. Scaling and assessment of data quality Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62, 72-82 10.1107/S0907444905036693
Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G. W.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S. Overview of the CCP4 suite and current developments Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 235-242 10.1107/S0907444910045749
McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software J. Appl. Crystallogr. 2007, 40, 658-674 10.1107/S0021889807021206
Terwilliger, T. C.; Grosse-Kunstleve, R. W.; Afonine, P. V.; Moriarty, N. W.; Zwart, P. H.; Hung, L. W.; Read, R. J.; Adams, P. D. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard Acta Crystallogr., Sect. D: Biol. Crystallogr. 2008, 64, 61-69 10.1107/S090744490705024X
Adams, P. D.; Afonine, P. V.; Bunkóczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 213-221 10.1107/S0907444909052925
Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and development of Coot Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 486-501 10.1107/S0907444910007493
Moriarty, N. W.; Grosse-Kunstleve, R. W.; Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 1074-1080 10.1107/S0907444909029436
Chen, V. B.; Arendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 12-21 10.1107/S0907444909042073
Hayward, S.; Berendsen, H. J. C. Systematic analysis of domain motions in proteins from conformational change; new results on citrate synthase and T4 lysozyme Proteins: Struct., Funct., Genet. 1998, 30, 144-154 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N
Ptak, C. P.; Ahmed, A. H.; Oswald, R. E. NMR approaches to functional dynamics of genetically separated iGluR domains Neuromethods 2016, 106, 101-118 10.1007/978-1-4939-2812-5-8
Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes J. Biomol. NMR 1995, 6, 277-293 10.1007/BF00197809
Lee, W.; Tonelli, M.; Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy Bioinformatics 2015, 31, 1325-1327 10.1093/bioinformatics/btu830
Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-a visualization system for exploratory research and analysis J. Comput. Chem. 2004, 25, 1605-1612 10.1002/jcc.20084
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.