Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels
[en] Thiamine is essential for normal brain function and its deficiency causes metabolic
impairment, specific lesions, oxidative damage and reduced adult hippocampal neurogenesis
(AHN). Thiamine precursors with increased bioavailability, especially benfotiamine, exert
neuroprotective effects not only for thiamine deficiency (TD), but also in mouse models of
neurodegeneration. As it is known that AHN is impaired by stress in rodents, we exposed
C57BL6/J mice to predator stress for 5 consecutive nights and studied the proliferation
(number of Ki67-positive cells) and survival (number of BrdU-positive cells) of newborn
immature neurons in the subgranular zone of the dentate gyrus. In stressed mice, the number
of Ki67- and BrdU-positive cells was reduced compared to non-stressed animals. This
reduction was prevented when the mice were treated (200 mg/kg/day in drinking water for 20
days) with thiamine or benfotiamine, that were recently found to prevent stress-induced
behavioral changes and glycogen synthase kinase-3β (GSK-3β) upregulation in the CNS.
Moreover, we show that thiamine and benfotiamine counteract stress-induced bodyweight
loss and suppress stress-induced anxiety-like behavior. Both treatments induced a modest
increase in the brain content of free thiamine while the level of thiamine diphosphate (ThDP)
remained unchanged, suggesting that the beneficial effects observed are not linked to the role
of this coenzyme in energy metabolism. Predator stress increased hippocampal protein
carbonylation, an indicator of oxidative stress. This effect was antagonized by both thiamine
and benfotiamine. Moreover, using cultured mouse neuroblastoma cells, we show that in
particular benfotiamine protects against paraquat-induced oxidative stress. We therefore
hypothesize that thiamine compounds may act by boosting anti-oxidant cellular defenses, by a
mechanism that still remains to be unveiled. Our study demonstrates, for the first time, that
thiamine and benfotiamine prevent stress-induced inhibition of hippocampal neurogenesis and
accompanying physiological changes. The present data suggest that thiamine precursors with
high bioavailability might be useful as a complementary therapy in several neuropsychiatric
disorders.
Research Center/Unit :
Giga-Neurosciences - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Vignisse, Julie ; Université de Liège > Département des maladies infectieuses et parasitaires (DMI) > Mycologie vétérinaire
Sambon, Margaux ; Université de Liège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels
Publication date :
2017
Journal title :
Molecular and Cellular Neuroscience
ISSN :
1044-7431
eISSN :
1095-9327
Publisher :
Elsevier
Volume :
82
Pages :
126-136
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 602805 - AGGRESSOTYPE - Aggression subtyping for improved insight and treatment innovation in psychiatric disorders FP7 - 602805 - AGGRESSOTYPE - Aggression subtyping for improved insight and treatment innovation in psychiatric disorders
Name of the research project :
“5-100” Russian Research Excellence program
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture Fondation Recherche Alzheimer EU - European Union CE - Commission Européenne
Autry, A.E., Adachi, M., Cheng, P., Monteggia, L.M., Gender-specific impact of brain-derived neurotrophic factor signaling on stress-induced depression-like behavior. Biol. Psychiatry 66 (2009), 84–90, 10.1016/j.biopsych.2009.02.007.
Balakumar, P., Rohilla, A., Krishan, P., Solairaj, P., Thangathirupathi, A., The multifaceted therapeutic potential of benfotiamine. Pharmacol. Res. 61 (2010), 482–488, 10.1016/j.phrs.2010.02.008.
Bath, K.G., Schilit, A., Lee, F.S., Stress effects on BDNF expression: effects of age, sex, and form of stress. Neuroscience 239 (2013), 149–156, 10.1016/j.neuroscience.2013.01.074.
Beltramo, E., Berrone, E., Tarallo, S., Porta, M., Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol. 45 (2008), 131–141.
Bettendorff, L., Thiamine in excitable tissues: reflections on a non-cofactor role. Metab. Brain Dis. 9 (1994), 183–209.
Bettendorff, L., Peeters, M., Jouan, C., Wins, P., Schoffeniels, E., Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed-phase high-performance liquid chromatographic method. Anal. Biochem. 198 (1991), 52–59.
Bettendorff, L., Goessens, G., Sluse, F., Wins, P., Bureau, M., Laschet, J., Grisar, T., Thiamine deficiency in cultured neuroblastoma cells: effect on mitochondrial function and peripheral benzodiazepine receptors. J. Neurochem. 64 (1995), 2013–2021.
Beukelaers, P., Vandenbosch, R., Caron, N., Nguyen, L., Belachew, S., Moonen, G., Kiyokawa, H., Barbacid, M., Santamaria, D., Malgrange, B., Cdk6-dependent regulation of G(1) length controls adult neurogenesis. Stem Cells 29 (2011), 713–724 Dayt. Ohio 10.1002/stem.616.
Bozic, I., Savic, D., Laketa, D., Bjelobaba, I., Milenkovic, I., Pekovic, S., Nedeljkovic, N., Lavrnja, I., Benfotiamine attenuates inflammatory response in LPS stimulated BV-2 microglia. PLoS One, 10, 2015, e0118372, 10.1371/journal.pone.0118372.
Bozic, I., Savic, D., Stevanovic, I., Pekovic, S., Nedeljkovic, N., Lavrnja, I., Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells. Front. Cell. Neurosci., 9, 2015, 351, 10.3389/fncel.2015.00351.
Castrén, E., Võikar, V., Rantamäki, T., Role of neurotrophic factors in depression. Curr. Opin. Pharmacol. 7 (2007), 18–21, 10.1016/j.coph.2006.08.009.
Chan, J.P., Cordeira, J., Calderon, G.A., Iyer, L.K., Rios, M., Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol. Cell. Neurosci. 39 (2008), 372–383, 10.1016/j.mcn.2008.07.017.
Chen, H.-J.C., Spiers, J.G., Sernia, C., Lavidis, N.A., Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum. Free Radic. Biol. Med. 90 (2016), 219–229, 10.1016/j.freeradbiomed.2015.11.023.
David, D.J., Samuels, B.A., Rainer, Q., Wang, J.-W., Marsteller, D., Mendez, I., Drew, M., Craig, D.A., Guiard, B.P., Guilloux, J.-P., Artymyshyn, R.P., Gardier, A.M., Gerald, C., Antonijevic, I.A., Leonardo, E.D., Hen, R., Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62 (2009), 479–493, 10.1016/j.neuron.2009.04.017.
Dief, A.E., Samy, D.M., Dowedar, F.I., Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress. J. Nutr. Sci. Vitaminol. (Tokyo) 61 (2015), 1–7, 10.3177/jnsv.61.1.
Duman, R.S., Depression: a case of neuronal life and death? Biol. Psychiatry 56 (2004), 140–145, 10.1016/j.biopsych.2004.02.033.
Duman, R.S., Monteggia, L.M., A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59 (2006), 1116–1127, 10.1016/j.biopsych.2006.02.013.
Ekdahl, C.T., Claasen, J.-H., Bonde, S., Kokaia, Z., Lindvall, O., Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 13632–13637, 10.1073/pnas.2234031100.
Fung, T.C., Olson, C.A., Hsiao, E.Y., Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20 (2017), 145–155, 10.1038/nn.4476.
Gangolf, M., Czerniecki, J., Radermecker, M., Detry, O., Nisolle, M., Jouan, C., Martin, D., Chantraine, F., Lakaye, B., Wins, P., Grisar, T., Bettendorff, L., Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One, 5, 2010, e13616.
Ghaleiha, A., Davari, H., Jahangard, L., Haghighi, M., Ahmadpanah, M., Seifrabie, M.A., Bajoghli, H., Holsboer-Trachsler, E., Brand, S., Adjuvant thiamine improved standard treatment in patients with major depressive disorder: results from a randomized, double-blind, and placebo-controlled clinical trial. Eur. Arch. Psychiatry Clin. Neurosci. 266 (2016), 695–702, 10.1007/s00406-016-0685-6.
Gibson, G.E., Blass, J.P., Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid. Redox Signal. 9 (2007), 1605–1619.
Gibson, G.E., Hirsch, J.A., Fonzetti, P., Jordan, B.D., Cirio, R.T., Elder, J., Vitamin B1 (thiamine) and dementia. Ann. N. Y. Acad. Sci. 1367 (2016), 21–30, 10.1111/nyas.13031.
Gould, E., Tanapat, P., McEwen, B.S., Flügge, G., Fuchs, E., Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. U. S. A. 95 (1998), 3168–3171.
Greenwood, J., Love, E.R., Pratt, O.E., Kinetics of thiamine transport across the blood-brain barrier in the rat. J. Physiol. 327 (1982), 95–103.
Hammes, H.P., Du, X., Edelstein, D., Taguchi, T., Matsumura, T., Ju, Q., Lin, J., Bierhaus, A., Nawroth, P., Hannak, D., Neumaier, M., Bergfeld, R., Giardino, I., Brownlee, M., Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat. Med. 9 (2003), 294–299.
Hanson, N.D., Owens, M.J., Nemeroff, C.B., Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36 (2011), 2589–2602, 10.1038/npp.2011.220.
Koo, J.W., Duman, R.S., IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 751–756, 10.1073/pnas.0708092105.
Liu, J., Wang, X., Shigenaga, M.K., Yeo, H.C., Mori, A., Ames, B.N., Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 10 (1996), 1532–1538.
Malberg, J.E., Duman, R.S., Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28 (2003), 1562–1571, 10.1038/sj.npp.1300234.
Marchetti, V., Menghini, R., Rizza, S., Vivanti, A., Feccia, T., Lauro, D., Fukamizu, A., Lauro, R., Federici, M., Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 55 (2006), 2231–2237.
Markova, N., Bazhenova, N., Anthony, D.C., Vignisse, J., Svistunov, A., Lesch, K.-P., Bettendorff, L., Strekalova, T., Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 75 (2017), 148–156.
Miller, B.R., Hen, R., The current state of the neurogenic theory of depression and anxiety. Curr. Opin. Neurobiol. 30 (2015), 51–58, 10.1016/j.conb.2014.08.012.
Ming, G.-L., Song, H., Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70 (2011), 687–702, 10.1016/j.neuron.2011.05.001.
Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Luigi Di Salvo, M., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., Bunik, V., Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci. Rep., 5, 2015, 12583, 10.1038/srep12583.
Nunes, M.E., Müller, T.E., Braga, M.M., Fontana, B.D., Quadros, V.A., Marins, A., Rodrigues, C., Menezes, C., Rosemberg, D.B., Loro, V.L., Chronic treatment with paraquat induces brain injury, changes in antioxidant defenses system, and modulates behavioral functions in zebrafish. Mol. Neurobiol., 2016, 10.1007/s12035-016-9919-x.
Ogbonnaya, E.S., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F., O'Leary, O.F., Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatry 78 (2015), e7–e9, 10.1016/j.biopsych.2014.12.023.
Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., Xu, T.L., Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133 (2010), 1342–1351.
Pan, X., Chen, Z., Fei, G., Pan, S., Bao, W., Ren, S., Guan, Y., Zhong, C., Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer's disease. Neurosci. Bull. 32 (2016), 591–596, 10.1007/s12264-016-0067-0.
Paxinos, G., Franklin, K.B.J., The Mouse Brain in Stereotaxic Coordinates. second ed., 2001, Academic Press, San Diego.
Peterson, G.L., A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83 (1977), 346–356.
Rada, P., Rojo, A.I., Evrard-Todeschi, N., Innamorato, N.G., Cotte, A., Jaworski, T., Tobón-Velasco, J.C., Devijver, H., García-Mayoral, M.F., Van Leuven, F., Hayes, J.D., Bertho, G., Cuadrado, A., Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol. Cell. Biol. 32 (2012), 3486–3499, 10.1128/MCB.00180-12.
Sanchez-Ramirez, G.M., Caram-Salas, N.L., Rocha-Gonzalez, H.I., Vidal-Cantu, G.C., Medina-Santillan, R., Reyes-Garcia, G., Granados-Soto, V., Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur. J. Pharmacol. 530 (2006), 48–53.
Schmid, U., Stopper, H., Heidland, A., Schupp, N., Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab. Res. Rev. 24 (2008), 371–377.
Schoenfeld, T.J., Gould, E., Stress, stress hormones, and adult neurogenesis. Exp. Neurol. 233 (2012), 12–21, 10.1016/j.expneurol.2011.01.008.
Shen, L., Chen, C., Yang, A., Chen, Y., Liu, Q., Ni, J., Redox proteomics identification of specifically carbonylated proteins in the hippocampi of triple transgenic Alzheimer's disease mice at its earliest pathological stage. J. Proteom. 123 (2015), 101–113, 10.1016/j.jprot.2015.04.005.
Shoeb, M., Ramana, K.V., Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic. Biol. Med. 52 (2012), 182–190, 10.1016/j.freeradbiomed.2011.10.444.
Singh, S.P., Chhunchha, B., Fatma, N., Kubo, E., Singh, S.P., Singh, D.P., Delivery of a protein transduction domain-mediated Prdx6 protein ameliorates oxidative stress-induced injury in human and mouse neuronal cells. Am. J. Physiol. Cell Physiol. 310 (2016), C1–16, 10.1152/ajpcell.00229.2015.
Snyder, J.S., Glover, L.R., Sanzone, K.M., Kamhi, J.F., Cameron, H.A., The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus 19 (2009), 898–906, 10.1002/hipo.20552.
Stracke, H., Gaus, W., Achenbach, U., Federlin, K., Bretzel, R.G., Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp. Clin. Endocrinol. Diabetes 116 (2008), 600–605.
Stranahan, A.M., Khalil, D., Gould, E., Social isolation delays the positive effects of running on adult neurogenesis. Nat. Neurosci. 9 (2006), 526–533, 10.1038/nn1668.
Strekalova, T., Steinbusch, H.W., Measuring behavior in mice with chronic stress depression paradigm. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 34 (2010), 348–361.
Strekalova, T., Evans, M., Chernopiatko, A., Couch, Y., Costa-Nunes, J., Cespuglio, R., Chesson, L., Vignisse, J., Steinbusch, H.W., Anthony, D.C., Pomytkin, I., Lesch, K.-P., Deuterium content of water increases depression susceptibility: the potential role of a serotonin-related mechanism. Behav. Brain Res. 277 (2015), 237–244, 10.1016/j.bbr.2014.07.039.
Tanapat, P., Hastings, N.B., Rydel, T.A., Galea, L.A., Gould, E., Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J. Comp. Neurol. 437 (2001), 496–504.
Vetreno, R.P., Hall, J.M., Savage, L.M., Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol. Learn. Mem. 96 (2011), 596–608.
Volvert, M.L., Seyen, S., Piette, M., Evrard, B., Gangolf, M., Plumier, J.C., Bettendorff, L., Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol., 8, 2008, 10.
Warner-Schmidt, J.L., Duman, R.S., Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16 (2006), 239–249, 10.1002/hipo.20156.
Wu, S., Ren, J., Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha. Neurosci. Lett. 394 (2006), 158–162.
Zhao, N., Zhong, C., Wang, Y., Zhao, Y., Gong, N., Zhou, G., Xu, T., Hong, Z., Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage. Neurobiol. Dis. 29 (2008), 176–185.