Aldehydes; liquid chromatography; tandem mass spectrometry; animal feed; validation
Abstract :
[en] Knowing that polyunsaturated fatty acids can lead to the formation of potentially toxic aldehydes as secondary oxidation products, an analytical method using liquid chromatography coupled to tandem mass spectrometry detection (LC-MS/MS) has been developed to evaluate the concentration of eight aldehydes in animal feed: malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), 4-hydroxy-2-hexenal (4-HHE), crotonaldehyde (CRT), benzaldehyde (BNZ), hexanal (HXL), 2,4-nonadienal and 2,4-decadienal. The developed method has been validated according to the criteria and procedure described in international standards. The evaluated parameters were: specificity/selectivity, recovery, precision, accuracy, uncertainty, limits of detection and quantification, using the concept of accuracy profiles. These parameters have been determined during experiments realized on 3 different days with grounded Kellogg’s® Corn Flakes® cereals as model matrix for animal feed and spiked at different levels of concentration. Malondialdehyde, 4-HHE, 4-HNE, crotonaldehyde, benzaldehyde and hexanal can be analysed in the same run in animal feed with a very good accuracy, with recovery rates ranging from 86 to 109% for a working range going from 0.16 to 12.50 mg/kg. Concerning 2,4-nonadienal and 2,4-decadienal, their analysis can be realized as well but in a limited range of concentration and with a limited accuracy. Indeed, recovery rates ranged between 54 and 114% and coefficient of variation for the intermediate precision between 11 and 25% for these two compounds.
Research Center/Unit :
FARAH - Fundamental and Applied Research for Animals and Health - ULiège
Disciplines :
Food science
Author, co-author :
Douny, Caroline ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Bayram, Pinar
Brose, François ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Degand, Guy ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Département de sciences des denrées alimentaires (DDA)
Scippo, Marie-Louise ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Analyse des denrées alimentaires
Language :
English
Title :
Development of an LC-MS/MS analytical method for the simultaneous measurement of aldehydes from polyunsaturated fatty acids degradation in animal feed
J. A. Lovegrove, B. A. Griffin. The acute and long-term effects of dietary fatty acids on vascular function in health and disease. Curr. Opin. Clin. Nutr. 2013, 16, 162.
W. S. Harris, D. Mozzaffarian, E. Rimm, P. Kris-Etherton, L. L. Rudel, L. J. Appel, M. M. Engler, M. B. Engler, F. Sacks. Omega-6 fatty acids and risks for cardiovascular disease: a science advisory from the American Heart Association subcommittee of the Council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidemiology and prevention. Circulation. 2009, 119, 902.
K. Raes, S. De Smet, D. Demeyer. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim. Feed Sci. Tech. 2004, 113, 199.
J. D. Wood, R. I. Richardson, G. R. Nute, A. V. Fisher, M. M. Campo, E. Kasapidou, P. R. Sheard, M. Enser. Effects of fatty acids on meat quality: a review. Meat Sci. 2004, 66, 21.
G. Cherian, D. Gonzalez, K. S. Ryu, M. P. Goeger. Long-term feeding of conjugated linoleic acid and fish oil to laying hens: effects on hepatic histopathology, egg quality, and lipid components. J. Appl. Poultry Res. 2007, 16, 420.
M. Guillevic, M. Kouba, J. Mourot. Effect of a linseed diet on lipid composition, lipid peroxidation and consumer evaluation of French fresh and cooked pork meats. Meat Sci. 2009, 81, 612.
M. Enser, N. D. Scollan, N. J. Choi, E. Kurt, K. Hallet, J. D. Wood. Effect of dietary lipid on the content of conjugated linoleic acid (CLA) in beef muscle. Anim. Sci. 1999, 69, 143.
C. Lemahieu, C. Bruneel, E. Ryckebosch, K. Muylaert, J. Buyse, I. Foubert. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods. 2015, 19, 821.
J. M. Bourre. Where to find omega-3 fatty acids and how feeding animals with diet enriched in omega-3 fatty acids to increase nutritional value of derived products for human: what is actually useful? J. Nut. Health Aging. 2005, 9, 232.
H. D. Belitz, W. Grosch, P. Schieberle. Food Chemistry, 3rdEdnSpringer, Heidelberg, 2004.
M. D. Guillén, P. S. Uriarte. Aldehydes contained in edible oils of a very different nature after prolonged heating at frying temperature: Presence of toxic oxygenated α,β unsaturated aldehydes. Food Chem. 2012, 131, 915.
P. S. Uriarte, M. D. Guillén. Formation of toxic alkylbenzenes in edible oils submitted to frying temperature. Influence of oil composition in main components and heating time. Food Res. Int. 2010, 43, 2161.
H. Esterbauer, R. J. Schaur, H. Zollner. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81.
WHO – World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation, World Health Organization, Geneva, 2003.
T. T. Reed. Lipid peroxidation and neurodegenerative disease. Free Radic. Biol. Med. 2011, 51, 1302.
D. L. Vander Jagt, L. A. Hunsaker, T. J. Vander Jagt, M. S. Gomez, D. M. Gonzales, L. M. Deck, R. E. Royer. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem. Pharmacol. 1997, 53, 1133.
Belgian Superior Health Council. Sécurité des huiles et des graisses, Avis n°8310, The Federal Public Service (FPS) Health, Food Chain Safety and Environment, Belgium, 2011.
P. J. A. Sheehy, P. A. Morrissey, A. Flynn. Consumption of thermally-oxidized sunflower oil by chicks reduces a-tocopherol status and increases susceptibility of tissues to lipid oxidation. Brit. J. Nutr. 1994, 71, 53.
R. Song, G. C. Shurson. Evaluation of lipid peroxidation level in corn dried distillers grains with solubles. ASAS WS P. 2013, 91, 4383.
S. Yang, J. Xie, Q. Li. Oxidative response and antioxidative mechanism in germinating soybean seeds exposed to cadmium. Int. J. Environ. Res. Public Health. 2012, 9, 2827.
Commission of the European Communities. Commission Decision 2002/657/EC implementing Council Directive 96/23/EC, concerning the performance of analytical methods and the interpretation of results, EC Commission, Brussels, 2002.
ICH – International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Validation of analytical procedures: text and methodology Q2(R1) Current Step 4 version, International Council for Harmonisation, Switzerland, 2005.
K. Syslová, P. Kačer, M. Kuzma, V. Najmanová, Z. Fenclová, Š. Vlčková, J. Lebedová, D. Pelclová. Rapid and easy method for monitoring oxidative stress markers in body fluids of patients with asbestos or silica-induced lung diseases. J. Chrom. B. 2009, 877, 2477.
P. Willetts, R. Wood. in Principles and Practices of Method Validation, (Eds: A. Fajgelj, Á. Ambrus). The Royal Society of Chemistry, Cambridge, 2000, pp. 253–295.
M. Feinberg. La validation des méthodes d'analyse, Masson, Paris, 1996.
C. Douny, A. Tihon, P. Bayonnet, F. Brose, G. Degand, E. Rozet, J. Milet, L. Ribonnet, L. Lambin, Y. Larondelle, M. L. Scippo. Validation of the analytical procedure for the determination of malondialdehyde and three other aldehydes in vegetable oil using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and application to linseed oil. Food Anal. Methods. 2015, 8, 1425.
F. Fenaille, P. Mottier, R. J. Turesky, S. Ali, P. A. Guy. Comparison of analytical techniques to quantify malondialdehyde in milk powders. J. Chrom. A. 2001, 921, 237.
M. Czauderna, J. Kowalczyk, M. Marounek. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chrom. B. 2011, 879, 2251.
A. S. Sim, C. Salonikas, D. Naidoo, D. Emil Leon Wilcken. Improved method for plasma malondialdehyde measurement by high-performance liquid chromatography using methyl malondialdehyde as an internal standard. J. Chrom. B. 2003, 785, 337.
B. Boulanger, P. Chiap, W. Dewé, J. Crommen, P. Hubert. An analysis of the SFSTP guide on validation of chromatographic bioanalytical methods: progresses and limitations. J. Pharmaceut. Biomed. 2003, 32, 753.
P. Hubert, J. J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P. A. Compagnon, W. Dewé, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat. Harmonization of strategies for the validation of quantitative analytical procedures: A SFSTP proposal—part I. J. Pharmaceut. Biomed. 2004, 36, 579.
FDA – Food and Drug Administration. International Conference on Harmonization: guideline on validation of analytical procedures: definitions and terminology. Fed. Regist. 1995, 60, 11260.