magnetic shielding; superconductivity; magnetic measurements
Abstract :
[en] We have experimentally studied the magnetic shielding properties of a cylindrical shell of BiPbSrCaCuO subjected to low frequency AC axial magnetic fields. The magnetic response has been investigated as a function of the dimensions of the tube, the magnitude of the applied field and the frequency. These results are explained quantitatively by employing the method of Brandt ( 1998 Phys. Rev. B 58 6506) with a Jc( B) law appropriate for a polycrystalline material. Specifically, we observe that the applied field can sweep into the central region either through the thickness of the shield or through the opening ends, the latter mechanism being suppressed for long tubes. For the first time, we systematically detail the spatial variation of the shielding factor ( the ratio of the applied field over the internal magnetic field) along the axis of a high-temperature superconducting tube. The shielding factor is shown to be constant in a region around the centre of the tube, and to decrease as an exponential in the vicinity of the ends. This spatial dependence comes from the competition between two mechanisms of field penetration. The frequency dependence of the shielding factor is also discussed and shown to follow a power law arising from the finite creep exponent n.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Disciplines :
Physics Electrical & electronics engineering
Author, co-author :
Denis, Samuel ; Royal Military Academy of Belgium & University of Liège
Dusoulier, Laurent; Royal Military Academy of Belgium & University of Liège
Clayton R P 1992 Introduction to Electromagnetic Compatibility (New York: Wiley)
Pavese F 1998 Magnetic shielding Handbook of Applied Superconductivity (Bristol: Institute of Physics Publishing) pp1461-83
Plechacek V, Pollert E and Hejtmanek J 1996 Mater. Chem. Phys. 43 95-8
Pavese F, Bergadano E, Bianco M, Ferri D, Giraudi D and Vanolo M 1996 Adv. Cryog. Eng. 42 917-22
Pavese F, Bianco M, Andreone D, Cresta R and Rellecati P 1993 Physica C 204 1-7
Willis J O, McHenry M E, Maley M P and Sheinberg H 1989 IEEE Trans. Magn. 25 2502-5
Itoh M, Ohyama T, Minemoto T, Numata K and Hoshino K 1992 J. Phys. D: Appl. Phys. 25 1630-4
Omura A, Oka M, Mori K and Itoh M 2003 Physica C 386 506-11
Mager A J 1970 IEEE Trans. Magn. 6 67-75
Grenci G, Denis S, Dusoulier L, Pavese F and Penazzi N 2006 Supercond. Sci. Technol. 19 249-55
Denis S, Grenci G, Dusoulier L, Cloots R, Vanderbemden P, Vanderheyden B, Dirickx M and Ausloos M 2006 J. Phys. Conf. Ser. 43 509-12
Cavallin T, Quarantiello R, Matrone A and Giunchi G 2006 J. Phys. Conf. Ser. 43 1015-8
Giunchi G, Ripamonti G, Cavallin T and Bassani E 2006 Cryogenics 46 237-42
Symko O G, Yeh W J and Zheng D J 1989 J. Appl. Phys. 65 2142-4
Matsuba H, Yahara H and Irisawa D 1992 Supercond. Sci. Technol. 5 S432-9
Yasui K, Tarui Y and Itoh M 2006 J. Phys. Conf. Ser. 43 1393-6
Bean C P 1962 Phys. Rev. Lett. 8 250-3
Bean C P 1964 Rev. Mod. Phys. 36 31-9
Brandt E H 1998 Phys. Rev. B 58 6506-22
Hussain A A and Sayer M 1992 Cryogenics 32 64-8
Niculescu H, Schmidmeier R, Topolscki B and Gielisse P J 1994 Physica C 299 105-12
Plechacek V, Hejtmanek J, Sedmidubsky D, Knizek K, Pollert E, Janu Z and Tichy R 1995 IEEE Trans. Appl. Supercond. 5 528-31
Karthikeyan J, Paithankar A S, Prasad R and Sonl N C 1994 Supercond. Sci. Technol. 7 949-55
http://www.can.cz/shields.php
Vanderbemden Ph, Destombes Ch, Cloots R and Ausloos M 1998 Supercond. Sci. Technol. 11 94-100
Vanderbemden Ph, Bradely A D, Doyle R A, Lo W, Astill D M, Cardwell D A and Campbell A M 1998 Physica C 302 257-70
Forkl A 1993 Phys. Scr. T 49 148-58
Müller K H, MacFarlane J C and Driver R 1989 Physica C 158 69-75
Brandt E H 1996 Phys. Rev. B 54 4246-64
Kim Y B, Hempstead C F and Strnad A R 1962 Phys. Rev. Lett. 9 306-9
Brandt E H 1995 Rep. Prog. Phys. 58 1465-594
Yang Y, Martinez E and Beduz C 1999 Inst. Phys. Conf. Ser. 167 855-8
Müller K H, MacFarlane J C and Driver R 1989 Physica C 158 366-70
Navau C, Sanchez A, Pardo E, Chen D-X, Bartolomé E, Granados X, Puig T and Obradors X 2005 Phys. Rev. B 71 214507
Brandt E H 1997 Phys. Rev. B 55 14513-26
Brandt E H and Indenbom M V 1993 Phys. Rev. B 48 12893-906
Pannetier M, Klaasen F C, Wijngaarden R J, Welling M, Heeck K, Huijbregtse J M, Dam B and Griessen R 2001 Phys. Rev. B 64 144505
Schuster T, Kuhn H, Brandt E H, Indenbom M V, Koblischka M R and Konczykowski M 1994 Phys. Rev. B 50 16684-707
Cabrera B 1975 The use of superconducting shields for generating ultra-low magnetic field regions and several related experiments PhD Thesis Stanford University