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Abstract  

We have experimentally studied the magnetic shielding properties of a cylindrical shell of BiPbSrCaCuO 
subjected to low frequency AC axial magnetic fields. The magnetic response has been investigated as a function 
of the dimensions of the tube, the magnitude of the applied field and the frequency. These results are explained 
quantitatively by employing the method of Brandt (1998 Phys. Rev. B 58 6506) with a JC(B) law appropriate for 
a polycrystalline material. Specifically, we observe that the applied field can sweep into the central region either 
through the thickness of the shield or through the opening ends, the latter mechanism being suppressed for long 
tubes. For the first time, we systematically detail the spatial variation of the shielding factor (the ratio of the 
applied field over the internal magnetic field) along the axis of a high-temperature superconducting tube. The 
shielding factor is shown to be constant in a region around the centre of the tube, and to decrease as an 
exponential in the vicinity of the ends. This spatial dependence comes from the competition between two 
mechanisms of field penetration. The frequency dependence of the shielding factor is also discussed and shown 
to follow a power law arising from the finite creep exponent n. 

1. Introduction 

Electromagnetic shielding has two main purposes. The first one is to prevent an electronic device from radiating 
electromagnetic energy, in order to comply with radiation regulations, to protect neighbouring equipment from 
electromagnetic noise or, in certain military applications, to reduce the electromagnetic signature of the device. 
The second purpose of shielding is to protect sensitive sensors from radiation emitted in their surroundings, in 
order to take advantage of their full capabilities. 

As long as the frequency of the source field remains large, typically f > 1 kHz, conducting materials can be used 
to attenuate the field with the skin effect. For the lowest frequencies, however, conductors continue to act as 
good electric shields (and can be used to make a Faraday cage), but they fail to shield magnetic fields. The 
traditional approach to shield low frequency magnetic fields consists in using soft ferromagnetic materials with a 
high relative permeability, which divert the source field from the region to be protected [1]. As the magnetic 
permeability decreases with increasing frequency, this approach is only practical for low frequencies (typically           
f < 1 kHz). If low temperatures are allowed by the application (77 K for cooling with liquid nitrogen), shielding 
systems based on high-temperature superconductors (HTS) compete with the traditional solutions [2]. Below 
their critical temperature, Tc, HTS are strongly diamagnetic and expel a magnetic flux from their bulk. They can 
be used to construct enclosures that act as very effective magnetic shields over a broad frequency range [2]. 

Several factors determine the quality of a HTS magnetic shield. First, a threshold induction, Blim, characterizes 
the maximum applied induction that can be strongly attenuated. In the case of a shield that is initially not 
magnetized and is subjected to an increasing applied field, the internal field remains close to zero until the 
applied induction rises above Blim. The field then penetrates the inner region of the shield and the induction 
increases with the applied field [3-8]. A second important factor is the geometrical volume over which a shield 
of given size and shape can attenuate an external field below a given level. A third determining factor is the 
frequency response of the shield. 

In this paper, we focus on the shielding properties of a ceramic tube in the parallel geometry, which means that 
the source field is applied parallel to the tube axis. This geometry is amenable to direct physical interpretation 
and numerical simulations, as currents flow along concentric circles perpendicular to the axis. Note that a HTS 
tube certainly outperforms a ferromagnetic shield in the parallel geometry [9]. For a ferromagnetic tube with an 



Published in: Superconductor Science and Technology (2007), vol.20 ,iss. 3, pp.192-201 
Status: Postprint (Author’s version) 

infinite length, the shield does not attenuate the external magnetic field since its longitudinal component must be 
continuous across the air-ferromagnet interface. For finite lengths, the magnetic flux is caught in the material 
because of demagnetization effects but the shielding efficiency remains poor for long tubes. 

A number of results can be found in the literature on HTS tubes in the parallel geometry. For HTS 
polycrystalline materials, Blim was found to vary between 0.3 mT for a tube with a superconducting wall of 
thickness d = 40 µm [10, 11], and 15 mT for d = 2.2 mm [8] at 77 K. If lower temperatures are allowed than 77 
K, higher Blim values can be obtained with other compounds. As an example, MgB2 tubes were reported to shield 
magnetic inductions up to 1 T at 4.2 K [12, 13], Results on the variation of the field attenuation along the axis 
appear to be contradictory. An exponential dependence was measured for a YBCO tube [14] and for a BSCCO 
tube [15], Other measurements [7, 16] in similar conditions have shown instead a constant shielding factor in a 
region around the centre of YBCO and BSCCO tubes. As for the frequency response, the shielding factor is 
expected to be constant if flux creep effects are negligible, as is the case in Bean's model [17, 18], It is, on the 
other hand, expected to increase with frequency in the presence of flux creep, since the induced currents saturate 
to values that increase with frequency [19]. Experimental data have shown very diverse behaviours. In [15], the 
field attenuation due to a thick BSCCO film on a cylindrical silver substrate was found to be frequency-
independent. The same results were established for superconducting disks made from YBCO powder and 
subjected to perpendicular fields [20, 21], Yet other studies on bulk BSCCO tubes [3, 22] measured a field 
attenuation that decreases with frequency, whereas the attenuation was shown to slowly increase with frequency 
for a YBCO superconducting tube [23]. 

The purpose of this paper is to provide a detailed study of the magnetic shielding properties of a polycrystalline 
HTS tube, with regard to the three determining factors: threshold induction, spatial variation of the field   
attenuation  and frequency response. The study is carried both experimentally and by means of numerical 
simulations, in order to shed light on the relation between the microscopic mechanisms of flux penetration and 
the macroscopic properties. For the numerical simulations, we have followed the method proposed by Brandt in 
[19], which can be carried out easily with good precision on a personal computer. We focus on a HTS tube with 
one opening at each end and assume that the superconducting properties are uniform along the axis and isotropic. 

Table 1: Physical characteristics of the sample: the material composition and the critical temperature come 
from [24]. 

Material Bi1.8Pb0.26Sr2Ca2Cu3O10+x

Length ℓ = 8 cm 
Inner radius a1 = 6.5 mm 
Outer radius a2 = 8 mm 
Wall thickness d = 1.5 mm 
Critical temperature Tc  108 K 

 

The report is organized as follows. The sample and the experimental set-up are described in section 2. In section 
3, we discuss the constitutive laws that are appropriate for a polygrain HTS and set up the main equations and 
the numerical model. Section 4 is devoted to the shielding properties of superconducting tubes subjected to 
slowly time varying applied fields (called the DC mode). First, the evolution of the measured internal magnetic 
induction of a commercial sample versus the applied induction is presented. We then detail the field penetration 
into a HTS tube and study the field attenuation as a function of position along the tube axis. The frequency 
response of the shield is addressed in section 5, where it is shown that the variations with frequency can be 
explained by scaling laws provided heat dissipation can be neglected. Our main results are summarized in 
section 6, where we also draw conclusions of practical interest. 

2. Experimental details 

We measured the shielding properties of a commercial superconducting specimen (type CST-12/80 from CAN 
Superconductors), which was cooled at T = 77 K under zero field. The sample is a tube made by isostatic 
pressing of a polygrain ceramic. Its main characteristics are summarized in table 1. 

The experimental set-up is shown in figure 1. The sample is immersed in liquid nitrogen and placed inside a 
source coil generating an axial magnetic induction Ba = Ba . The applied induction, Ba, can be generated in two 
different modes. In the first mode, called the DC mode, Ba increases at a constant rate of  0.2 mT s-1 with 
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a brief stop (around 1 s) needed to measure the internal induction at each wanted value of Ba. The maximum 
applied induction in this mode is 30 mT. The induction in the inside of the shield, Bin, is measured with a Hall 
probe placed in the centre of the tube; the probe is connected to a HP34420 nanovoltmeter. To reduce noise from 
outside sources, the set-up is enclosed in a double mu-metal ferromagnetic shield. The field resolution is around 
1 µT. In the second mode of operation, called the AC mode, the applied field is a low-frequency alternating field 
with no DC component. The frequency of the applied induction ranges between 43 and 403 Hz and the 
amplitude of Ba can reach 25 mT. The field inside the tube is measured by a pick-up coil, which can be moved 
along the z axis and whose induced voltage is measured with an EGG7260 lock-in amplifier. In this mode, the 
set-up can measure magnetic inductions as weak as 1 nT at 103 Hz. As a result, care must be taken to reject 
common-mode electrical noise. In the present work, the capacitive coupling between the source and the pick-up 
coils was reduced by electrically connecting the superconducting tube to ground so as to realize an electrical 
shield. 

Figure 1: Experimental set-up. The superconducting tube of length ℓ and wall thickness d = a2 - a1 is placed 
inside a coil generating an axial induction of magnitude Ba. The applied field can have the form of a slow ramp, 
in which case the magnetic sensor is a Hall probe connected to a nanovoltmeter, or a that of a low-frequency 
alternating field, in which case the field inside the tube is measured by a pick-up coil connected to a lock-in 
amplifier. In all cases, the sample and the sensor are cooled with liquid nitrogen (Γ = 77 K) under zero-field 
condition. 

 

 

3. Theory 

3.1. Flux penetration in polycrystalline bulk ceramics 

Bulk polycrystalline BiSrCaCuO ceramics consist of a stack of a large number of superconducting grains [25]. 
The penetration of a magnetic flux in such a material is inhomogeneous and strongly depends on the 
microstructure, as shielding currents can flow both in the grains and the intergranular matrix [26]. For a 
polygrain material that has been cooled in zero-field condition, the flux penetrates in roughly three different 
steps [27]. First, for the weakest applied fields, Meissner surface currents shield the volume and no flux enters 
the sample. When the local induction, B, exceeds µ0Hclj, where Hc1j is the lower critical field of the intergranular 
matrix, vortices start entering this region. The magnetic flux penetrates the grains at the higher induction                
B ~ µoHc1j [28], where Hclj is the lower critical field of the grains themselves. 
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3.2. Model assumptions 

In our model, we neglect surface barrier effects and set Hc1j to zero. Therefore, flux starts threading the 
intergranular matrix as soon as the applied field is turned on. The penetration of individual grains depends on the 
intensity of the local magnetic field which, because of demagnetization effects, varies as a function of the grain 
sizes and orientations. The penetration of each grain may thus take place over a range of applied fields: we 
expect an increasing number of grains to be penetrated as the external field is increased. Since we aim at 
studying the macroscopic properties of the superconducting tube and aim at deriving recommendations of 
practical interest, we will not seek to describe grains individually and thus neglect detailed effects of their 
diamagnetism. We will instead consider the induction B to be an average of the magnetic flux over many grains 
and assume the constitutive law B = µ0 H. The resulting model describes the magnetic properties of an isotropic 
material which supports macroscopic shielding currents. 

We   will   further   assume   the   material   to   obey   the conventional [19, 29] constitutive law 

 

where J is the module of the vector current density J. The exponent n allows for flux creep and typically ranges 
from 10 to 40 for YBCO and BSCCO compounds at 77 K. The value for n that is adequate for the sample of 
table 1 is to be determined from the frequency dependence of its shielding properties, see section 5.3. Note that 
one recovers Bean's model, which neglects flux creep effects, by taking the limit n → ∞. A final constitutive law 
comes from the polygrain nature of the material. The critical current density is assumed to decrease with the 
local induction as in Kim's model [30]: 

 

where Jc0 and B1 are experimentally determined by fitting magnetization data, as discussed in section 4.2. 

3.3. Model equations and numerical algorithm 

A common difficulty in modelling the flux penetration in HTS materials arises from the fact that the direction of 
the shielding currents is usually not known a priori and, furthermore, may evolve over time as the flux front 
moves into the sample. This problem is greatly simplified for geometries in which the direction of the shielding 
currents is imposed by symmetry. Examples include long bars in a perpendicular applied field [29], in which 
case the currents flow along the bar, and axial symmetric specimens subjected to an axial field, for which the 
currents flow along concentric circles perpendicular to the symmetry axis. Numerous examples have been 
extensively studied by Brandt [31] for both geometries, by means of a numerical method based on the 
discretization of Biot-Savart integral equations. In this work, we follow Brandt's method for modelling the flux 
penetration in a tube subjected to an axial field. 

To set up the main equations, we closely follow [19]. As a reminder, the sample is a tube of internal radius a1, 
external radius a2 and length ℓ (see figure 1). We work with cylindrical coordinates, so that positions are denoted 
by (r, φ, z). As the magnitude of the axial induction, Ba, is increased, the induced electric field and the resulting 
current density assume the form 

 

where φ is the unit vector in the azimuthal direction. The magnetic induction is invariant under a rotation around 
the z axis and has no φ component. Thus, 
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The fields B, E, and the current density, J, satisfy Maxwell's equations 

 

where we have used the constitutive law B = µ0H. 

In order to avoid an explicit and costly computation of the magnetic induction B(r, t) in the infinite region 
exterior to the tube, an equation of motion is first established for the macroscopic shielding current density J(r, t), 
since its support is limited to the volume of the superconductor. The magnetic field is then obtained where 
required by integrating the Biot-Savart law. After having eliminated B and integrated over φ, this procedure 
leads to the integral equation [19] 

 

where r and r' are shorthand for (r,z) and (r',z'), while Q(r, r') is a kernel which only depends on the sample 
geometry. In the present case, Q assumes the form 

 

is to be evaluated numerically as suggested in [19]. By contrast to [19], the kernel is integrated in the radial 
direction from r' = a1 to a2, as dictated by the tubular geometry of the sample. The equation of motion for J is 
obtained in three steps. First, the electric field is eliminated from (7) by using the constitutive law (1). Second, 
the equation is discretized on a two-dimensional grid with spatial steps Δr and Δz. Third, the resulting matrix 
equation is inverted, yielding the relation 

 

Here, Ji and Qij are shorthand for J(ri) and Q(ri,rj). Actually, the two-dimensional space matrix is transformed 
into a one-dimensional vector. Imposing the initial condition 

 

the current density can be numerically integrated over time by updating the relation 

 

where  is evaluated as in (10) and Δt is chosen suitably small. An adaptative time step procedure described in 
[19] makes the algorithm converge towards a solution that reproduces the experimental data fairly well, see 
sections 4 and 5. Note that for those geometries that have one dimension much larger than the others, as is the 
case for a long tube with a thin wall, one can improve the convergence while preserving the precision by 
working with rectangular cells with the refinement described in [32]. 

According to the two different modes of operation of the external source that were introduced in section 2, we 
have run the algorithm with Ba(t) either in the form of a ramp, Ba(t) =  or as a sinusoidal source of frequency 
f, Ba(t) = B0sin(2π f t)· The shielding properties of the sample are evaluated in both cases by probing the magnetic 
flux density at points located along the z axis of the tube. By symmetry, this field is directed along , and we 
define Bzin(z) as 
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However, in the AC mode, with Ba(t) = B0 sin(2π f t), one must pay attention to the nonlinearity of the magnetic 
response of the sample. The induction Bzin contains several harmonics, all odd in the absence of a DC component 
[33]. We are led to define the AC shielding factor as 

 

where Ba,RMS = B0/√2 is the RMS value of the applied magnetic induction and Bzin,RMS(z) is the RMS value of the 
fundamental component of Bzin, which can be directly measured by the lock-in amplifier. 

The algorithm presented in this section allows us to determine DCSF up to 107 in the DC mode and ACSF up to 
104 in the AC mode. 

4. Magnetic shielding in the DC mode 

4.1. Experimental results 

Figure 2 (open circles) shows the evolution of the magnetic induction measured at the centre of the tube, Bin ≡ 
Bzin(z = 0), as a function of the applied magnetic induction. Here, the external source was operated in the DC 
mode. The sample described in section 2 was cooled down to 77 K in zero-field conditions. Then, we applied an 
increasing magnetic induction and reached Ba = 28 mT. Upon decreasing the applied induction to Ba = -28 mT 
and increasing it again up to Ba = 28 mT, the internal induction is seen to follow an hysteretic curve. This 
behaviour reflects the dissipation that occurs as vortices sweep in and out of the superconductor. Remarkably, 
along the first magnetization curve, Bin is negligible below a threshold Blim ≈ 14 mT and increases rapidly for 
higher Ba. As the tube is no longer an efficient magnetic shield in this latter regime, several authors regarded Blim 
as a parameter determining the quality of the shield [4, 7, 8]. In this paper, we determine Blim as the maximum 
applied magnetic induction for which the DCSF is higher than 1000 (60 dB). In figure 2, Blim roughly 
corresponds to the induction at which the first magnetization curve meets the hysteretic cycle. 

Figure 2: Evolution of the internal magnetic induction at the centre of the tube, Bzin(z = 0), as a function of the 
applied induction. The sample (table 1) is cooled in zero-field conditions down to T = 77 K. The open circles 
represent the experimental data and the filled squares represent the simulation, as discussed in section 4.2. 
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4.2. Model parameters and numerical results 

The shape of the curve of figure 2 is indicative of the dependence of the critical current density, Jc, on the local 
induction. Assuming Kim's model (2), the parameters Jc0 and B1 can be extracted from data as follows. First, we 
neglect flux creep effects and set n → ∞. As a result, the current density can either be null or be equal to                 
J = Jc(B). Second, we neglect demagnetization effects and thus assume that the tube is infinitely long. Equation 
(6) then becomes 

 

A direct integration yields a homogeneous field in the hollow of the tube that assumes the form 

 

is the threshold induction assuming an infinite tube with no creep. Fitting equation (17) to experimental data in 
the region Ba > 14 mT, we find B1, = 5 mT and Jc0 = 1782 A cm-2. 

In practice, flux creep effects are present and the exponent n assumes a high, but finite, value. In our case, as is 
to be determined in section 5.3, we found n ≈ 25. The filled squares of figure 2 show the simulated values of the 
internal induction versus the applied induction, Ba, for a tube with the dimensions of the sample and a flux creep 
exponent n = 25. The Jc(B) relation (2) was introduced in the equations of section 3.3 with B1 = 5 mT and Jc0 = 
1782 A cm-2. These numerical results reproduce the data fairly well. As in the experiment, a simulated value of 
Blim can be obtained as the maximum applied induction for which the DCSF is higher than 60 dB. We also obtain 
Blim ≈ 14 mT. We note that, even in the presence of flux creep with n = 25, the simulated Blim has the same value 
as the one given in Kim's model, (18). 

4.3. Modelling of the field penetration into a HTS tube 

In this section, we compare the penetration of the magnetic flux in a tube and in a bulk cylinder through a 
numerical analysis. This comparison reveals the coexistence of different penetration mechanisms in the tube. An 
understanding of these mechanisms is necessary to predict the efficiency of a HTS magnetic shield. 

We use the numerical model introduced in section 3, with a flux creep exponent n = 25. In order to facilitate 
comparisons with results from the literature, we choose the critical current density, Jc, to be independent of the 
local magnetic induction. We further wish to normalize the applied field to the full penetration field, HP, that, in 
the limit n → ∞, corresponds to the field for which the sample is fully penetrated and a current density Jc flows 
throughout the entire volume of the superconductor. 

For a bulk cylinder of radius a2 and length ℓ, HP assumes the form [27]: 

 

In the limit ℓ → ∞, one recovers the Bean limit HP∞ = Jca2. An approximate expression of HP for a tube can be 
obtained with the energy minimization approach developed in [34]: 
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with δ = a1/a2. An interesting observation is that (20) can be rewritten as 

 

where  = (a1 + a2)/2 is the mean radius. This shows that the correction to the field HP of an infinite tube, HP∞ = 
Jc(a2 - a1) = Jcd, depends only on the ratio ℓ/ . Physically, this ratio is a measure of the importance of end 
effects. 

Consider then the cylinder and the tube of figure 3, both of external radius a2 and length ℓ = 6a2. The inner 
radius of the tube is a1 = 0.5a2. Both samples are subjected to an increasing axial magnetic induction, with (t)= 
Ec/a2 and Ba(0) = 0. 

Figure 4 shows a comparison of the simulated flux front for the cylinder (a) and for the tube (b) as a function of 
the applied magnetic induction. Here, the flux front corresponds to the locus of positions at which the current 
density rises to Jc/2. To label the front as a function of the applied induction, we have taken as a reference 
magnetic field the full penetration field, HP, whose expression is given in (19) and (20), both for the bulk 
cylinder and for the tube. The flux front is depicted for different external magnetic inductions with Ba/(µ0HP) = 
0.1,0.3,0.5, and 0.7. We note that the front shapes are similar to those obtained by Navau et al [34], which used 
an approximate method based on the minimization of the total magnetic energy to study the field penetration into 
bulk and hollow cylinders. Due to the finite length of the samples, the flux fronts are curved in the end region 
z ℓ/2. Remarkably, this curvature implies that the magnetic flux progresses faster towards z = 0 along the 
inner boundary of the tube (r = a1) than the magnetic flux penetrates the central region near z = 0 in a bulk 
cylinder. Thus, two penetration mechanisms coexist for the tube: the magnetic field can penetrate either from the 
external boundary at r = a2, as in the cylinder, or from the internal boundary at r = a1; via the two openings. 

Figure 3: Cylinder and tube of external radius a2 and length ℓ = 6a2 subjected to an axial magnetic induction Ba 
=  Only the region 0 ≤ r ≤ a2 and 0 ≤ z ≤ ℓ/2 is depicted for symmetry reasons. 

 

Consider next the field lines* for the cylinder and for the tube submitted to axial fields equal to half of their 
respective field HP (see figure 5). The shape of the field lines in the region near z = b are seen to be very 
different for the cylinder and for the tube. In particular, for the tube, the component Bz is negative near the 
opening and close to the inner boundary, as seen in the dashed circle of figure 5(b). Such a behaviour is 
reminiscent of the field distribution found in the proximity of a thin ring [35-38]. 

 
                                                           
* A general difficulty arises when one tries to visualize 3D magnetic field lines with axial symmetry in a 2D plot Here, we have used 
contours of the vector potential A(r, z) at equidistant levels. Another possibility would be to use contours of rA(r, z) at non-equidistant levels. 
Brandt has shown [19] that both approaches provide reasonably good approximations of the field lines. 
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The existence of a negative Bz inside the hollow part of the tube can be interpreted as follows. For an infinitely 
long tube, the magnetic field can only penetrate from the external surface and the field lines are parallel to the 
axis of the tube. As the length ℓ of the tube decreases, the flux lines spread out near z = ℓ due to demagnetization 
effects. As a result, shielding currents in the end region of the tube fail to totally shield the applied field and a 
non-zero magnetic field is admitted through the opening. The shielding currents flow in an extended region in 
the periphery of the superconductor. In the superconductor, ahead of the flux front, there is no shielding current 
and hence no electric field. Integrating Faraday-Lenz's law along a contour lying in a non-penetrated region thus 
gives zero, meaning that the flux threaded by this contour must also be null. (As a reminder, the sample is cooled 
in zero field.) Therefore, the magnetic flux due to the negative component Bz near r = a1 is there to cancel the 
positive flux that has been allowed in the hollow of the tube near the axis. 

Figure 4: Cylinder (a) and tube (b) of external radius α2 of length ℓ = 6α2 subjected to an axial magnetic field. 
The internal radius of the tube is a1 = 0.5α2· The samples are characterized by field-independent Jc and n values 
(n = 25). As flux lines are symmetric about z = 0 and r = 0, only the region 0 ≤ r ≤ a2 and 0 ≤ z ≤ ℓ/2 is depicted. 
The contour curves show the flux fronts at Ba = 0.1, 0.3, 0.5, 0.7 µ0HP, where HP is the field of full penetration. 

 

Figure 5: Cylinder (a) and tube (b) of external radius a2 and length ℓ = 6a2 subjected to an axial magnetic field. 
The samples are characterized by Jc and n values independent of the local magnetic induction (n = 25). Only the 
region 0 ≤ r ≤ a2 and 0 ≤ z ≤ ℓ/2 is depicted. The applied induction is 0.5 µ0HP. The thick line represents the flux 
front (J = Jc/2) and the thin lines represent the magnetic field lines. One can observe negative components Bz in 
the dashed circle of (b). 
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Figure 6: Simulated variation of the DC shielding factor along the z axis for increasing applied induction. From 
top to bottom: Ba/Blim = 0.8, 0.9,1, 1.05 and 1.1. The threshold Blim is determined as the maximum applied 
induction for which the shielding factor is higher than 60 dB. The geometry is identical to that of the sample 
studied experimentally. The black solid line is the equation DCSF(z) = ec(ℓ/2-z)/a1 (see text). For symmetry 
reasons, only the upper half of the tube is shown. 

 

4.4. Uniformity of the field attenuation in a superconducting tube 

Since magnetic flux can penetrate both through the outside surface and through the openings, it is therefore 
relevant to investigate how the magnetic induction varies in the hollow of the tube. Numerical simulations show 
that the variation of the field attenuation along the radius is much smaller than the variation along the z axis. We 
thus concentrate on the latter and study the DC shielding factor, DCSF, as a function of z. 

Figure 6 shows the variation of DCSF along the z axis as a function of the external induction Ba. The geometrical 
parameters are those of the sample studied experimentally and a Jc(B) relation with the parameters of section 4.2 
is used. As the curve DCSF(z) is symmetric about z = 0, only the portion Z > 0 is shown. Three different 
behaviours can be observed: in region 1, the shielding factor is nearly constant; in region 2, it starts decreasing 
smoothly; it falls off as an exponential in region 3, which is roughly defined as the region for which                           
Z > ℓ/2 - 2a2. 

A useful result is known for semi-infinite tubes made of type-I superconductor and subjected to a weak axial 
field. In the Meissner state, the magnitude of the internal induction, Bin, decreases from the extremity of the tube 
[39] as 

 

where a1 is the inner radius and C ≈ 3.83 is the first zero of the Bessel function of the first kind J1 (x). This result 
holds for ℓ/2 - z >> a1 and implies that the shielding factor increases as an exponential of ℓ/2 - z. An exponential 
dependence has also been measured in some HTS materials for applied fields above Hc1 [14, 15]. Other 
measurements [16] in similar conditions have shown instead a uniform shielding factor in a region around the 
centre of the tube. 
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Figure 7: Evolution of the DC shielding factor along the axis for different lengths, t. The internal and external 
radii, a1 and a2, are kept fixed (a1 = 0.8α2)· The applied induction is Ba = 0.85 Blim. 

 

From the simulation results we see that both behaviours can actually be observed in a type-II tube, provided the 
ratio ℓ/  is large. For the sample studied in this paper, this ratio is equal to ℓ/  ~ 11. The exponential falloff 
approximately follows the law DCSF(z) ~ exp(C(ℓ/2 - z)/a1) (black solid line) for the lowest fields only, but 
appears much softer for the larger magnitudes Ba. This behaviour can be attributed to the fact that, as Ba 
increases, the region near z = ℓ/2 becomes totally penetrated (see figure 4) and the 'effective' length of the tube 
decreases. It leads in turn to a reduction of the distance to the extremity, ℓ/2 - z, which therefore softens the 
falloff of the shielding factor. 

The two behaviours—a nearly constant shielding factor and an exponential decrease of this factor—can be 
associated with the two mentioned penetration mechanisms. For the part of the flux that penetrates via the 
openings, we expect the shielding factor to increase as an exponential of (ℓ/2 - z) as one moves away from the 
extremity. This is the behaviour observed in type-I shields, for which no flux can sweep through the side wall if 
d >> λ, where λ denotes the London penetration depth. By contrast, in the centre region, for a tube with a large 
ℓ/  ratio, the flux penetrating via the openings is vanishingly small and flux penetration through the walls 
prevails. This leads to the nearly constant shielding factor observed in region 1. As the ratio ℓ/  increases, flux 
penetration through the wall strengthens. As a result, the plateau region increases in size, as is confirmed in 
figure 7, which shows DCSF(z) for six different lengths ℓ/a2 (the outer radius and the width d = a2 - a1 = 0.2a2 
are kept fixed) and for Ba = 0.85 Blim. Note that the plateau of the shielding factor disappears for the smallest 
ratios ℓ/  (for ℓ ≤ 6α2) as for these ratios flux penetration through the openings competes with that through the 
wall. 

Figure 8: Variation of the AC shielding factor along the axis of the sample, at a frequency f = 103 Hz. Filled 
symbols: measurement. Continuous lines: simulation. From top to bottom: Ba,RMS = 10.8,12, 13.4, 15.3 and 16.6 
mT 
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This last example shows that it is important to distinguish Blim, which we have defined as the maximum 
induction for which DCSF is larger than 60 dB, from µ0HP, which corresponds to the full penetration of the 
sample. In fact, for ℓ < 6a2, the attenuation falls below 60 dB before the sample is fully penetrated. If ℓ is further 
reduced, ℓ ≤ 2a2, it is actually not possible to define an induction Blim, as DCSF is lower than 60 dB for any 
applied inductions. Therefore, the interest of using short open HTS tubes for magnetic shielding applications is 
very limited. 

When ℓ ≥ 6a2, the value of Blim is very close to the applied field for which the sample is fully penetrated, as the 
main penetration mechanism is the nonlinear diffusion through the superconducting wall. To evaluate Blim, one 
could then use (20), which for ℓ ≥ 6a2, is close to HP∞ = Jcd. However, this formula can be misleading for 
understanding the influence of the wall thickness, d. Expressions (20) or HP∞ = Jcd were established, ignoring 
the variation of Jc with B and show a linear dependence of Blim as a function of d. However, the decrease of Jc 
with the local induction yields a softer dependence as can be seen in (18). There, Blim ≈ Blim,∞ is linear in d only 
for thicknesses d much smaller than B1/(2µ0Jc0)  ≈  0.1 mm, but grows as √d for larger thicknesses if one takes 
the Jc0 and B1 parameters of section 4.2. Thus, if one wants to shield high magnetic inductions (larger than 100 
mT) with a superconductor similar to that described in section 2, unreasonably thick wall thicknesses are 
required. In this case, it is advisable to first reduce the field applied to the superconductor by placing a 
ferromagnetic screen around it. 

A final remark concerns the effect of the width of the superconducting wall, d, on the spatial dependence of 
DCSF. If d is increased while the ratio Ba/Blim is kept fixed, the shielding factor increases in magnitude but its z 
dependence remains qualitatively the same. 

In this section, we used a quasistatic field. The results concerning the spatial variation of the field attenuation are 
expected to be still valid in the case of an AC field. 

Figure 9: AC shielding factor versus frequency. The filled symbols come from a direct measurement and the 
open symbols correspond to an estimation based on scaling laws (see text). The two lines show that the variation 
of the AC shielding factor with the frequency is close to a power law. 

 

5. Magnetic shielding in the AC mode 

The sensing coil of the set-up described in section 2 can move along the axis of the sample. In this section, we 
first present the measured variation of the AC shielding factor along the axis of the tube and compare it to 
numerical simulations for which an AC applied induction is used. We also measure the frequency response and 
interpret the results with scaling laws arising from the constitutive law E α Jn. 

5.1.  Experimental results 

The variations of the measured AC shielding factor ACSF defined in (15), along the axis of the sample studied 
experimentally for a fixed frequency and varying amplitudes of the applied field are shown in figure 8 (filled 
symbols). Apart from the upper curve of figure 8 corresponding to Ba,RMS = 10.8 mT, we observe a nearly 
constant measured shielding factor in the central region. Going further to the extremity of the tube, near z = 5a2, 
ACSF decreases as an exponential. 
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Figure 9 (filled symbols) shows a measurement of the AC shielding factor, ACSF, as a function of frequency for 
two applied magnetic inductions when the magnetic sensor is placed at the centre of the sample. The frequency 
dependence appears to follow a power law. 

Figure 10 shows the evolution of the AC shielding factor measured at the centre of the tube at a fixed frequency f 
= 103 Hz and for varying RMS values of the applied induction. The shielding factor decreases with Ba,RMS.  

5.2. Uniformity of the field attenuation 

The solid lines of figure 8 represent the simulated ACSF for the applied inductions used during the 
measurement. As in the DC case, we observe a constant shielding factor around the centre Z = 0 of the tube 
whereas ACSF falls off exponentially near the opening ends z = 5a2. Remarkably, one can observe the relative 
good quantitative agreement between simulated and experimental results of figure 8. For Ba,RMS   =  10.8 mT, 
local variations of the measured ACSF can be observed for |z| < 3. In particular, the maximum shielding factor is 
no longer located at the centre of the tube, and shielding appears to be asymmetric in z. For higher values of the 
applied magnetic induction, the maximum ACSF lies at z = 0 and shielding recovers its symmetry about the 
centre. These effects are supposed to be due to non-uniform superconducting properties. 

Figure 10: Measured AC shielding factor at the centre of the sample versus the RMS value of the applied 
magnetic induction Ba,RMS. Its frequency is kept fixed at f = 103 Hz. 

 

5.3. Scaling laws and frequency response 

The strong nonlinearity of the constitutive law E = Ec(J/Jc)n gives rise to frequency scaling laws with n-
dependent power exponents [19]. The scaling laws can be obtained by changing the time unit in Maxwell's 
equations (5) and (6) by a factor c > 0, t  tnew = t/c. Given a solution with a current density J(r,t), an applied 
induction Ba(r, t) and a total induction B(r, t), new solutions can be found that satisfy 

 

Transposed to the frequency domain, these relations imply that, if the frequency of the applied field is multiplied 
by a factor c, then the current density and the magnetic induction are rescaled by the factor c1/(n-1). In particular, if 
one knows the ACSF corresponding to the applied induction Ba at the frequency f, ACSF(Ba, f), one can deduce 
the ACSF corresponding to the magnetic induction Ba,new at the frequency fnew = c f by using: 

 

as ACSF is the ratio of two magnetic inductions (see (15)) and is thus invariant under scaling. Then, the 
frequency dependence of ACSF in figure 9 can be reproduced as follows using these scaling laws. First, we 
approximate the curve of figure 10 by piecewise exponentials, which gives ACSF(Ba, 103 Hz). Second, we use 
(26) and write: 
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Hence, the variations with respect to Ba in figure 10 can be translated into frequency variations at a fixed 
induction. This gives the upper curve of figure 9 (open symbols) for which we used n = 25. The lower curve is 
obtained by fixing Ba,new to 13 mT. This construction thus demonstrates that the frequency variation intrinsically 
arises from scaling laws. 

The detailed construction relies on a specific value of the creep exponent n, which we have taken here to be 
equal to n = 25 and independent of B. Analysing the frequency dependence with scaling laws thus also serves the 
purpose of determining the value of n that best fits experimental data. A HTS shield characterized by a lower n 
value would present a more pronounced frequency dependence of the shielding factor. 

One may wonder on the role played by the increased dissipation, due to the motion of vortices, as frequency is 
increased. Such dissipation can lead to a temperature rise, a decrease of the critical current density, and thus a 
decrease of the shielding factor. Nevertheless, it appears from figure 9 that the temperature increase must remain 
small in the frequency window investigated in our experiment (43-373 Hz), as no significant reduction of ACSF 
can be observed in that frequency range. One may equally wonder on the role played by the different harmonics 
of the internal magnetic induction. For the applied fields we consider here, the fundamental component strongly 
dominates the higher harmonics. As as consequence, the curves of figures 9 and 10 are not significantly affected 
if one takes the RMS value of the total internal magnetic induction, rather than its fundamental component, to 
define the shielding factor in the AC mode. 

6. Conclusions 

We have presented a detailed study of the magnetic shielding properties of a polycrystalline Bi-2223 
superconducting tube subjected to an axial field. We have measured the field attenuation with high sensitivity for 
DC and AC source fields, and have confronted data with computer modelling of the field distribution in the 
hollow of the tube. The numerical model is based on the algorithm described in [19], which is easy to implement 
on a personal computer. Our study allows us to detail the variation of the shielding factor along the axis, interpret 
it in terms of the penetration mechanisms and take into account flux creep and its effect on the frequency 
dependence. To our knowledge, it is the first study which systematically describes the spatial and frequency 
variations of the shielding factor in the hollow of a HTS tube. Our main findings can be summarized as follows. 

• A HTS tube can efficiently shield an axial induction below a threshold induction Blim. For our commercial 
sample, Blim = 14 mT. The threshold induction Blim increases with the ratio ℓ/ , the thickness of the tube, and 
depends on the exact Jc(B) dependence (ℓ is the length of the tube and  is the mean radius). When the length of 
the tube decreases, Blim can be strongly reduced because of demagnetizing effects. 

• There are two penetration mechanisms in a HTS tube in the parallel geometry: one from the external surface of 
the tube and one from the opening ends, the latter mechanism being suppressed for long tubes. These two 
mechanisms lead to a spatial variation of the shielding factor along the axis of the tube. In a zone extending 
between z = 0 (centre of the tube) and z = ℓ/2 - 3a2, the shielding factor is constant when ℓ > 6a2 (a2 is its 
external radius). Then it decreases as an exponential as one moves towards the extremity of the tube. As a 
consequence of this spatial dependence, no zone with a constant shielding factor exists for small tubes (ℓ < 6a2). 

• The shielding factor increases with the frequency of the field to shield, following a power law. This 
dependence can be explained from scaling laws arising from the constitutive law E α Jn. 

In practice, a tube of a Bi-2223 ceramic can thus be used to effectively shield an axial field at low frequencies. A 
sample with an outer radius a2 = 1.8 mm, a length ℓ > 6a2, a thickness d = 1.5 mm and with superconducting 
properties similar to the ones of our sample (table 1) strongly attenuates magnetic inductions lower than Blim = 14 
mT at 77 K. The shielding factor is nearly constant and larger than 103 (60 dB) in the region |z| < ℓ/2 - 3a2 if the 
applied induction is lower than 0.9 Blim. 
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