An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression.
[en] The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-kappaB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-kappaB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.
Disciplines :
Genetics & genetic processes
Author, co-author :
DARCIS, Gilles ; Centre Hospitalier Universitaire de Liège - CHU
An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression.
Publication date :
2015
Journal title :
PLoS Pathogens
ISSN :
1553-7366
eISSN :
1553-7374
Publisher :
Public Library of Science, United States - California
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Smit C, Geskus R, Walker S, Sabin C, Coutinho R, et al. (2006) Effective therapy has altered the spectrum of cause-specific mortality following HIV seroconversion. AIDS 20: 741–749. 16514305
Friis-Moller N, Sabin CA, Weber R, d'Arminio Monforte A, El-Sadr WM, et al. (2003) Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med 349: 1993–2003. 14627784
Blankson JN, Persaud D, Siliciano RF, (2002) The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med 53: 557–593. 11818490
Crowe S, Zhu T, Muller WA, (2003) The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol 74: 635–641. 12960232
Lewin SR, Kirihara J, Sonza S, Irving L, Mills J, et al. (1998) HIV-1 DNA and mRNA concentrations are similar in peripheral blood monocytes and alveolar macrophages in HIV-1-infected individuals. AIDS 12: 719–727. 9619803
Bergamaschi A, Pancino G, (2010) Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 7: 31. doi: 10.1186/1742-4690-7-31 20374633
Crowe SM, Sonza S, (2000) HIV-1 can be recovered from a variety of cells including peripheral blood monocytes of patients receiving highly active antiretroviral therapy: a further obstacle to eradication. J Leukoc Biol 68: 345–350. 10985250
Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, et al. (2009) HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med.
Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, et al. (2014) HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345: 179–183. doi: 10.1126/science.1254194 24968937
Chun TW, Davey RT, Jr.Ostrowski M, Shawn Justement J, Engel D, et al. (2000) Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med 6: 757–761. 10888923
Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, et al. (2013) Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 9: e1003211. doi: 10.1371/journal.ppat.1003211 23516360
Colin L, Van Lint C, (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6: 111. doi: 10.1186/1742-4690-6-111 19961595
McKernan LN, Momjian D, Kulkosky J, (2012) Protein Kinase C: One Pathway towards the Eradication of Latent HIV-1 Reservoirs. Adv Virol 2012: 805347. doi: 10.1155/2012/805347 22500169
Van Lint C, Bouchat S, Marcello A, (2013) HIV-1 transcription and latency: an update. Retrovirology 10: 67. doi: 10.1186/1742-4690-10-67 23803414
Bocklandt S, Blumberg PM, Hamer DH, (2003) Activation of latent HIV-1 expression by the potent anti-tumor promoter 12-deoxyphorbol 13-phenylacetate. Antiviral Res 59: 89–98. 12895692
Biancotto A, Grivel JC, Gondois-Rey F, Bettendroffer L, Vigne R, et al. (2004) Dual role of prostratin in inhibition of infection and reactivation of human immunodeficiency virus from latency in primary blood lymphocytes and lymphoid tissue. J Virol 78: 10507–10515. 15367617
Kulkosky J, Culnan DM, Roman J, Dornadula G, Schnell M, et al. (2001) Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98: 3006–3015. 11698284
Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA, (2002) Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J Virol 76: 8118–8123. 12134017
Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D, et al. (2004) Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem 279: 42008–42017. 15284245
Gulakowski RJ, McMahon JB, Buckheit RW, Jr.Gustafson KR, Boyd MR, (1997) Antireplicative and anticytopathic activities of prostratin, a non-tumor-promoting phorbol ester, against human immunodeficiency virus (HIV). Antiviral Res 33: 87–97. 9021050
Perez M, de Vinuesa AG, Sanchez-Duffhues G, Marquez N, Bellido ML, et al. (2010) Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency. Curr HIV Res 8: 418–429. 20636281
Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, et al. (2010) Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One 5: e11160. doi: 10.1371/journal.pone.0011160 20585398
Grant S, Roberts J, Poplin E, Tombes MB, Kyle B, et al. (1998) Phase Ib trial of bryostatin 1 in patients with refractory malignancies. Clin Cancer Res 4: 611–618. 9533528
Abreu CM, Price SL, Shirk EN, Cunha RD, Pianowski LF, et al. (2014) Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One 9: e97257. doi: 10.1371/journal.pone.0097257 24827152
Jiang G, Mendes EA, Kaiser P, Sankaran-Walters S, Tang Y, et al. (2014) Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cdelta-NF-kappaB signaling. AIDS 28: 1555–1566. doi: 10.1097/QAD.0000000000000289 24804860
Pandelo Jose D, Bartholomeeusen K, da Cunha RD, Abreu CM, Glinski J, et al. (2014) Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 462–463: 328–339. doi: 10.1016/j.virol.2014.05.033 25014309
Mbonye UR, Wang B, Gokulrangan G, Chance MR, Karn J, (2015) Phosphorylation of HEXIM1 at Tyr271 and Tyr274 Promotes Release of P-TEFb from the 7SK snRNP Complex and Enhances Proviral HIV Gene Expression. Proteomics 15: 2078–2086. doi: 10.1002/pmic.201500038 25900325
Karn J, Stoltzfus CM, (2012) Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2: a006916. doi: 10.1101/cshperspect.a006916 22355797
Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, et al. (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38: 439–451. doi: 10.1016/j.molcel.2010.04.012 20471949
Bartholomeeusen K, Xiang Y, Fujinaga K, Peterlin BM, (2012) Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. J Biol Chem 287: 36609–36616. doi: 10.1074/jbc.M112.410746 22952229
Li Z, Guo J, Wu Y, Zhou Q, (2013) The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 41: 277–287. doi: 10.1093/nar/gks976 23087374
Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319: 921–926. doi: 10.1126/science.1152725 18187620
Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, et al. (2012) BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol 92: 1147–1154. doi: 10.1189/jlb.0312165 22802445
Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, et al. (2013) BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12: 452–462. doi: 10.4161/cc.23309 23255218
Zhu J, Gaiha GD, John SP, Pertel T, Chin CR, et al. (2012) Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep 2: 807–816. doi: 10.1016/j.celrep.2012.09.008 23041316
Contreras X, Barboric M, Lenasi T, Peterlin BM, (2007) HMBA releases P-TEFb from HEXIM1 and 7SK snRNA via PI3K/Akt and activates HIV transcription. PLoS Pathog 3: 1459–1469. 17937499
Sung TL, Rice AP, (2006) Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells. Retrovirology 3: 66. 17014716
Bartholomeeusen K, Fujinaga K, Xiang Y, Peterlin BM, (2013) Histone deacetylase inhibitors (HDACis) that release the positive transcription elongation factor b (P-TEFb) from its inhibitory complex also activate HIV transcription. J Biol Chem 288: 14400–14407. doi: 10.1074/jbc.M113.464834 23539624
Fujinaga K, Barboric M, Li Q, Luo Z, Price DH, et al. (2012) PKC phosphorylates HEXIM1 and regulates P-TEFb activity. Nucleic Acids Res 40: 9160–9170. doi: 10.1093/nar/gks682 22821562
Wires ES, Alvarez D, Dobrowolski C, Wang Y, Morales M, et al. (2012) Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells. J Neurovirol 18: 400–410. doi: 10.1007/s13365-012-0103-4 22618514
Kutsch O, Vey T, Kerkau T, Hunig T, Schimpl A, (2002) HIV type 1 abrogates TAP-mediated transport of antigenic peptides presented by MHC class I. Transporter associated with antigen presentation. AIDS Res Hum Retroviruses 18: 1319–1325. 12487820
Matzuk MM, McKeown MR, Filippakopoulos P, Li Q, Ma L, et al. (2012) Small-molecule inhibition of BRDT for male contraception. Cell 150: 673–684. 22901802
Spina CA, Anderson J, Archin NM, Bosque A, Chan J, et al. (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9: e1003834. doi: 10.1371/journal.ppat.1003834 24385908
Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M, Jr.et al. (2014) Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A 111: 7078–7083. doi: 10.1073/pnas.1402873111 24706775
Pavlick AC, Wu J, Roberts J, Rosenthal MA, Hamilton A, et al. (2009) Phase I study of bryostatin 1, a protein kinase C modulator, preceding cisplatin in patients with refractory non-hematologic tumors. Cancer Chemother Pharmacol 64: 803–810. doi: 10.1007/s00280-009-0931-y 19221754
Morgan RJ, Jr.Leong L, Chow W, Gandara D, Frankel P, et al. (2012) Phase II trial of bryostatin-1 in combination with cisplatin in patients with recurrent or persistent epithelial ovarian cancer: a California cancer consortium study. Invest New Drugs 30: 723–728. doi: 10.1007/s10637-010-9557-5 20936324
Liu P, Xiang Y, Fujinaga K, Bartholomeeusen K, Nilson KA, et al. (2014) Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription. J Biol Chem 289: 9918–9925. doi: 10.1074/jbc.M113.539015 24515107
Fujinaga K, Luo Z, Schaufele F, Peterlin BM, (2015) Visualization of positive transcription elongation factor b (P-TEFb) activation in living cells. J Biol Chem 290: 1829–1836. doi: 10.1074/jbc.M114.605816 25492871
Budhiraja S, Famiglietti M, Bosque A, Planelles V, Rice AP, (2013) Cyclin T1 and CDK9 T-loop phosphorylation are downregulated during establishment of HIV-1 latency in primary resting memory CD4+ T cells. J Virol 87: 1211–1220. doi: 10.1128/JVI.02413-12 23152527
Chiang K, Rice AP, (2012) MicroRNA-mediated restriction of HIV-1 in resting CD4+ T cells and monocytes. Viruses 4: 1390–1409. doi: 10.3390/v4091390 23170164
Chiang K, Sung TL, Rice AP, (2012) Regulation of cyclin T1 and HIV-1 Replication by microRNAs in resting CD4+ T lymphocytes. J Virol 86: 3244–3252. doi: 10.1128/JVI.05065-11 22205749
Hoque M, Shamanna RA, Guan D, Pe'ery T, Mathews MB, (2011) HIV-1 replication and latency are regulated by translational control of cyclin T1. J Mol Biol 410: 917–932. doi: 10.1016/j.jmb.2011.03.060 21763496
McNamara RP, McCann JL, Gudipaty SA, D'Orso I, (2013) Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. Cell Rep 5: 1256–1268. doi: 10.1016/j.celrep.2013.11.003 24316072
Zou Z, Huang B, Wu X, Zhang H, Qi J, et al. (2014) Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA. Oncogene 33: 2395–2404. doi: 10.1038/onc.2013.179 23686307
Calao M, Burny A, Quivy V, Dekoninck A, Van Lint C, (2008) A pervasive role of histone acetyltransferases and deacetylases in an NF-kappaB-signaling code. Trends Biochem Sci 33: 339–349. doi: 10.1016/j.tibs.2008.04.015 18585916
Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C, et al. (2013) CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci U S A 110: 12655–12660. doi: 10.1073/pnas.1220136110 23852730
Eilebrecht S, Le Douce V, Riclet R, Targat B, Hallay H, et al. (2014) HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters. Nucleic Acids Res 42: 4962–4971. doi: 10.1093/nar/gku168 24623795
Dar RD, Hosmane NN, Arkin MR, Siliciano RF, Weinberger LS, (2014) Screening for noise in gene expression identifies drug synergies. Science 344: 1392–1396. doi: 10.1126/science.1250220 24903562
Spivak AM, Andrade A, Eisele E, Hoh R, Bacchetti P, et al. (2014) A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis 58: 883–890. doi: 10.1093/cid/cit813 24336828
Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, et al. (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487: 482–485. doi: 10.1038/nature11286 22837004
Kumar A, Abbas W, Herbein G, (2014) HIV-1 latency in monocytes/macrophages. Viruses 6: 1837–1860. doi: 10.3390/v6041837 24759213
Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF, (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20: 425–429. doi: 10.1038/nm.3489 24658076
Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, et al. (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155: 540–551. doi: 10.1016/j.cell.2013.09.020 24243014
Reuse S, Calao M, Kabeya K, Guiguen A, Gatot JS, et al. (2009) Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One 4: e6093. doi: 10.1371/journal.pone.0006093 19564922
Bouchat S, Gatot JS, Kabeya K, Cardona C, Colin L, et al. (2012) Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4(+) T cells from HIV-1-infected HAART-treated patients. AIDS 26: 1473–1482. doi: 10.1097/QAD.0b013e32835535f5 22555163
Hezareh M, Moukil MA, Szanto I, Pondarzewski M, Mouche S, et al. (2004) Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: role of conventional and novel PKC isoforms. Antivir Chem Chemother 15: 207–222. 15457682
Weitman S, Langevin AM, Berkow RL, Thomas PJ, Hurwitz CA, et al. (1999) A Phase I trial of bryostatin-1 in children with refractory solid tumors: a Pediatric Oncology Group study. Clin Cancer Res 5: 2344–2348. 10499603
Lebwohl M, Shumack S, Stein Gold L, Melgaard A, Larsson T, et al. (2013) Long-term follow-up study of ingenol mebutate gel for the treatment of actinic keratoses. JAMA Dermatol 149: 666–670. doi: 10.1001/jamadermatol.2013.2766 23553119
Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, et al. (2014) Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 20: 732–740. doi: 10.1038/nm.3613 24973920
Venkataraman S, Alimova I, Balakrishnan I, Harris P, Birks DK, et al. (2014) Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget 5: 2355–2371. 24796395
Belkina AC, Nikolajczyk BS, Denis GV, (2013) BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol 190: 3670–3678. doi: 10.4049/jimmunol.1202838 23420887
Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, et al. (2015) Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517: 381–385. doi: 10.1038/nature14053 25561180
Laird GM, Bullen CK, Rosenbloom DI, Martin AR, Hill AL, et al. (2015) Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest 125: 1901–1912. doi: 10.1172/JCI80142 25822022
Avettand-Fenoel V, Chaix ML, Blanche S, Burgard M, Floch C, et al. (2009) LTR real-time PCR for HIV-1 DNA quantitation in blood cells for early diagnosis in infants born to seropositive mothers treated in HAART area (ANRS CO 01). J Med Virol 81: 217–223. doi: 10.1002/jmv.21390 19107966
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.