M.Babincová, and P.Sourivong, (2001). Free radical scavenging activity of Scoparia dulcis extract. J. Med. Food. 4:179–181.
J.A.Bohn, and J.N.BeMiller, (1995). (1→3)-β-D-glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Polymers. 28:3–14.
S.M.Bowman, and S.J.Free, (2006). The structure and synthesis of the fungal cell wall. Bio. Essays. 28:799–808.
K.A.Borkovich,, L.A.Alex,, O.Yarden,, M.Freitag,, G.E.Turner,, N.D.Read,, S.Seiler, et al. (2004). Lessons from the genome sequence of Neurospora crassa: Tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1–108.
Z.Burkus, and F.Temelli, (2003). Determination of the molecular weight of barley b-glucan using intrinsic viscosity measurements. Carbohydr. Polymers. 54:51–57.
E.H.Byun,, J.H.Kim,, N.K.Sung,, J.I.Choi,, S.T.Lim,, K.H.Kim,, H.S.Yook,, M.W.Byun, and J.W.Lee, (2008). Effects of gamma irradiation on the physical and structural properties of β-glucan. Rad. Phys. Chem. 77:781–786.
E.Cabib,, B.Bowers,, A.Sburlati, and S.Silverman, (1988). Fungal cell wall synthesis: The construction of a biological structure. Microbiol. Sci. 5:370–375.
J.Chen, and R.Seviour, (2007). Medicinal importance of fungal β-(1-3), (1-6)-glucans. Mycol. Res. 111:635–652.
M.Elleuch,, D.Bedigian,, O.Roiseux,, S.Besbes,, C.Blecker, and H.Attia, (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 124:411–421.
F.W.Fitzpatrick, and J.F.Dicarlo, (1964). “Zymosan.” Ann. New York Acad. Sci. 118:233–262.
T.Fontaine,, C.Simenel,, G.Dubreucq,, O.Adam,, M.Delepierre,, J.Lemoine,, C.E.Vorgias,, M.Diaquin, and J.P.Latge, (2000). Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Biol. Chem. 275:27594–27607.
S.Freimund,, M.Sauter,, O.Kappelli, and H.Dutler, (2003). A new non-degrading isolation process for 1,3-β-D-glucan of high purity from baker's yeast Saccharomyces cerevisiae. Carbohydr. Polymers. 54:159–171.
T.Gardiner, (2000). β-glucan biological activities: A review. Glycosci. Nutr. 1:1–6.
S.Y.Hagiwara,, M.Takahashi,, Y.Shen,, S.Kaihou,, T.Tomiyama,, M.Yazawa,, Y.Tamai,, Y.Sin,, A.Kazusaka, and M.Terazawa, (2005). A phytochemical in the edible Tamogi-take mushroom (Pleurotus cornucopiae), D-mannitol, inhibits ACE activity and lowers the blood pressure of spontaneously hypertensive rats. Biosci. Biotech. Bioch. 69:1603–1605.
Z.Hromadkova, and A.Ebringerova, (2003). Ultrasonic extraction of plant materials-Investigation of hemicellulose release from buckwheat hulls. Ultrason. Sonochem. 10:127–133.
K.W.Hunter,, R.A.Gault, and M.D.Berner, (2002). Preparation of microparticulate β-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett. Appl. Microbiol. 35:267–271.
E.Iorio,, A.Torosantucci,, C.Bromuro,, P.Chiani,, A.Ferretti,, M.Giannini,, A.Cassone, and F.Podo, (2008). Candida albicans cell wall comprises a branched beta-D-(1→6)-glucan with beta-D-(1→3)-side chains. Carbohydr. Res. 343:1050–1061.
S.C.Jaehrig,, S.Rohn,, L.W.Kroh,, F.X.Wildenauer,, F.Lisdat,, L.-G.Fleischer, and T.Kurz, (2008). Antioxidative activity of (1→3), (1→6)-β-D-glucan from Saccharomyces cerevisiae grown on different media. LWT 41:868–877.
K.Jung,, Y.Ha,, S.K.Ha,, D.U.Han,, D.W.Kim,, W.K.Moon, and C.Chae, (2004). Antiviral effect of Saccharomyces cerevisiae β-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J. Vet. Med. B. 51:72–76.
Y.Kabir,, M.Yamaguchi, and S.Kimura, (1987). Effect of shiitake (Lentinus edodes) and maitake (Grifola frondosa) mushrooms on blood pressure and plasma lipids of spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. (Tokyo). 33:341–346.
N.K.Kapur,, D.Ashen, and R.S.Blumenthal, (2008). High density lipoprotein cholesterol: An evolving target of therapy in the management of cardiovascular disease. Vasc. Health Risk Manag. 4:39–57.
T.Kiho,, T.Kobayashi,, H.Morimoto,, S.Usui,, S.Ukai,, K.Hirano,, K.Aizawa, and T.Inakuma, (2000). Structural features of an anti-diabetic polysaccharide (TAP) from Tremella aurantia. Chem. Pharm. Bull. (Tokyo). 48:1793–1795.
T.Kiho,, H.Morimoto,, M.Sakushima,, S.Usui, and S.Ukai, (1995). Polysaccharides in fungi. XXXV. Anti diabetic activity of an acidic polysaccharide from the fruiting bodies of Tremella aurantia. Biol. Pharm. Bull. 18:1627–1629.
K.M.Klis,, P.de Groot, and K.Hellingwerf, (2001). Molecular organization of the cell wall of Candida albicans. Med. Mycol. 39:1–8.
F.M.Klis,, P.Mol,, K.Hellingwerf, and S.Brul, (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26:239–256.
H.Kobayashi,, R.Yoshida,, Y.Kanada,, Y.Fukuda,, T.Yagyu,, K.Inagaki,, T.Kondo,, N.Kurita,, M.Suzuki,, N.Kanayama, and T.Terao, (2005). Suppressing effects of daily oral supplementation of β-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J. Cancer Res. Clin. 131:527–538.
C.Laroche, and P.Michaud, (2007). New developments and prospective applications for beta (1,3) glucans. Recent Pat. Biotechnol. 1:59–73.
A.Lazaridou, and C.G.Biliaderis, (2007). Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J. Cereal Sci. 46:101–118.
X.Y.Liu,, Q.Wang,, S.W.Cui, and H.Z.Liu, (2008). A new isolation method of β-D-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocolloid. 22:239–247.
M.Magnani,, C.M.Calliari,, F.C.de Macedo,, Jr., M.P.Mori,, I.M.de Syllos Cólus, and R.J.H.Castro-Gomez, (2009). Optimized methodology for extraction of (1→3) (1→6)- β-D-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydr. Polym. 78:658–665.
M.S.Mantovani,, M.F.Bellini,, J.P.F.Angeli,, R.J.Oliveira,, A.F.Silva, and L.R.Ribeiro, (2008). β-Glucans in promoting health: Prevention against mutation and cancer. Mutat. Res. 658:154–161.
M.Mayell, (2001). Maitake extracts and their therapeutic potential. Altern. Med. Rev. 6:48–60.
A.Misaki,, K.Kawaguchi,, H.Miyaji,, H.Nagae,, S.Hokkoku,, M.Kakuta, and T.Sasaki, (1984). Structure of pestalotan, a highly branched (1→3)-β-D-glucan elaborated by Pestalotia sp. 815, and the enhancement of its antitumor activity by polyol modification of the side chains. Carbohydr. Res. 129:209–227.
T.Mizuno, (1999). The extraction and development of antitumor active polysaccharides from medicinal mushrooms in Japan (review). Int. J. Med. Mushrooms. 1:9–30.
A.Müller,, H.Ensley,, H.Pretus,, R.McNamee,, E.Jones,, E.McLaughlin,, W.Chandley,, W.Browder,, D.Lowman, and D.Williams, (1995). The application of various protic acids in the extraction of (1→3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydr. Res. 299:203–208.
Nagase, Y., Tokunaga, K., Ogawa, T., Sakamoto, T. and Mishima, S. (2005): JP2005068114.
H.Nakano,, K.Namatame,, H.Nemoto,, H.Motohashi,, K.Nishiyama, and K.Kumada, (1999). A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: Effect on prolongation of survival and improvement of quality of life. Kanagawa Lentinan Research Group. Hepatogastroenterology. 46:2662–2668.
N.Ohno,, T.Miura,, N.N.Miura,, Y.Adachi, and T.Yadomae, (2001). Structure and biological activities of hypochlorite oxidized zymosan. Carbohydr. Polym. 44:339–349.
B.Paulraj, and T.Saravanan, (2012). Optimization of β-glucan production from lower fungi using central composite design and its biological application. Int. J. Comput. Appl. (0975–8887) 49:23–28.
V.Petravić-Tominac,, V.Zechner-Krpan,, K.Berković,, P.Galović,, Z.Herceg,, S.Srečec, and I.Špoljarić, (2011). Rhelogical properties, water-holding, and oil-binding capacities of particulate β-glucans, isolated from spent brewer's yeast by three different procedures. Food Technol. Biotechnol. 49:56–64.
V.Petravić-Tominac,, V.Zechner-Krpan,, S.Grba,, S.Srečec,, I.Panjkota-Krbavčić, and L.Vidović, (2010). Biological effects of yeast β-glucans: Review. Agriculturae Conspectus Scientificus. 75:149–158.
Saito, H., Ohki, T. and Sasaki, T. (1979). A 13C-nuclear magnetic resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal branched (1→3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide. Carbohyd. Res. 74:227–240.
T.Saowanee,, S.Manop,, P.Thanaporn, and V.Cornel, (2004). Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. Int. J. Food Technol. 39:21–29.
F.Schmid,, B.A.Stone,, B.M.McDougall,, A.Bacic,, K.L.Martin,, R.T.Brownlee,, E.Chai, and R.J.Seviour, (2001). Structure of epiglucan, a highly side-chain/branched (1→3; 1→6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb. Ex. Schlecht. Carbohydr. Res. 331:163–171.
S.C.Tam,, K.P.Yip,, K.P.Fung, and S.T.Chang, (1986). Hypotensive and renal effects of an extract of the edible mushroom Pleurotus sajor-caju. Life Sci. 38:1155–1161.
S.Thammakiti,, M.Suphantharika,, T.Phaesuwan, and C.Verduyn, (2004). Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. Int. J. Food Sci. Technol. 39:21–29.
V.Vetvicka,, K.Terayama,, R.Mandeville,, P.Brousseau,, B.Kournikakis, and G.Ostroff, (2002). Pilot study: Orally-administered yeast β-1,3-glucan prophylactically protects against antrax infection and cancer in mice. JANA. 5:1–6.
J.J.Volman,, J.D.Ramakers, and J.Plat, (2008). Dietary modulation of immune function by β-glucans. Physiol. Behav. 94:276–284.
D.Wei,, L.Zhang,, D.L.Williams, and I.W.Browder, (2002). Glucan stimulates human dermal fibroblast collagen biosynthesis through a nuclear factor-1 dependent mechanism. Wound Repair Regen. 10:161–168.
B.Worrasinchai,, M.Suphantharika,, S.Pinjai, and P.Jamnong, (2006). β-Glucan prepared from spent brewer's yeast as a fat replacer in mayonnaise. Food Hydrocol. 20:68–78.
Z.Xiao,, C.A.Trincado, and M.P.Murtaugh, (2004). β-glucan enhancement of T cell IFN gamma response in swine. Vet. Immunol. Immunop. 102:315–320.
H.Xiaozhong,, M.Jie,, Z.Baogui, and F.Wangxiang, (2000). Isolation of β-(1,3)-D-glucan from baker's yeast by acid–alkali method. Ind Microbiol. (Chinese). 30:28–31.
W.Xie,, P.Xu, and Q.Liu, (2001). Antioxidant activity of water soluble chitosan derivatives. Bioorg. Med. Chem. Lett. 11:1699–1701.
W.Yajun,, Y.Shanjing, and W.Tianxing, (2003). Combination of induced autolysis and sodium hypochlorite oxidation for the production of Saccharomyces cerevisiae (1→3)-D-glucan. World J. Microbiol. Biotechnol. 19:947–952.
D.B.Zekovic,, S.Kwiatkowski,, M.M.Vrvic,, D.Jakovljevic, and C.A.Moran, (2005). Natural and modified (1→3)-β-D-glucans in health promotion and disease alleviation. Cr. Rev Biotechnol. 25:205–230.