Doctoral thesis (Dissertations and theses)
Hölder Continuity and Wavelets
Simons, Laurent
2015
 

Files


Full Text
ThesisMain2.pdf
Publisher postprint (6.91 MB)
Download
Annexes
ThesisPremierePageFinale37.pdf
Publisher postprint (386 kB)
Download
ThesisErratum.pdf
Publisher postprint (111.19 kB)
Download
ThesisDefense.pdf
Publisher postprint (1.69 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Hölder continuity; Hölder exponent; Wavelets; Continuous wavelet transform; Cantor's bijection; Riemann function; Darboux Function; Multiresolution analysis; Nonstationarity; Lnu spaces; Snu spaces; Wavelet Leaders
Abstract :
[en] There exist a lot of continuous nowhere differentiable functions, but these functions do not have the same irregularity. Hölder continuity, and more precisely Hölder exponent, allow to quantify this irregularity. If the Hölder exponent of a function takes several values, the function is said multifractal. In the first part of this thesis, we study in details the regularity and the multifractality of some functions: the Darboux function, the Cantor bijection and a generalization of the Riemann function. The theory of wavelets notably provides a tool to investigate the Hölder continuity of a function. Wavelets also take part in other contexts. In the second part of this thesis, we consider a nonstationary version of the classical theory of wavelets. More precisely, we study the nonstationary orthonormal bases of wavelets and their construction from a nonstationary multiresolution analysis. We also present the nonstationary continuous wavelet transform. For some irregular functions, it is difficult to determine its Hölder exponent at each point. In order to get some information about this one, new function spaces based on wavelet leaders have been introduced. In the third and last part of this thesis, we present these new spaces and their first properties. We also define a natural topology on them and we study some properties.
Disciplines :
Mathematics
Author, co-author :
Simons, Laurent ;  Université de Liège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Hölder Continuity and Wavelets
Alternative titles :
[fr] Continuité höldérienne et ondelettes
Defense date :
24 June 2015
Number of pages :
xiii, 129
Institution :
ULiège - Université de Liège
Degree :
Docteur en Sciences
Promotor :
Bastin, Françoise ;  Université de Liège - ULiège > Mathematics
Nicolay, Samuel  ;  Université de Liège - ULiège > Mathematics
President :
Schneiders, Jean-Pierre ;  Université de Liège - ULiège > Mathematics
Jury member :
Jaffard, Stéphane ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Aubry, Jean-Marie ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Berthé, Valérie
Available on ORBi :
since 21 May 2015

Statistics


Number of views
755 (82 by ULiège)
Number of downloads
560 (68 by ULiège)

Bibliography


Similar publications



Contact ORBi