The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.
![]() ![]() | Bastin, F., & Demeulenaere, L. (2017). On the equality between two diametral dimensions. Functiones et Approximatio, Commentarii Mathematici, 56 (1), 95-107. doi:10.7169/facm/1594 ![]() |
![]() ![]() | Bastin, F., Nicolay, S., & Simons, L. (2016). About the Uniform Hölder Continuity of Generalized Riemann Function. Mediterranean Journal of Mathematics, 13 (1), 101-117. doi:10.1007/s00009-014-0501-3 ![]() |
![]() ![]() | Bastin, F., Esser, C., & Jaffard, S. (2016). Large deviation spectra based on wavelet leaders. Revista Matemática Iberoamericana, 32 (3), 859-890. doi:10.4171/rmi/901 ![]() |
![]() ![]() | Bastin, F., Esser, C., & Simons, L. (2015). Topology on new sequence spaces defined with wavelet leaders. Journal of Mathematical Analysis and Applications, 431 (1), 317-341. doi:10.1016/j.jmaa.2015.04.074 ![]() |
![]() ![]() | Bastin, F., Conejero, J. A., Esser, C., & Seoane Sepúlveda, J. B. (2015). Algebrability and nowhere Gevrey differentiability. Israel Journal of Mathematics, 205, 127–143. doi:10.1007/s11856-014-1104-1 ![]() |
![]() ![]() | Simons, L., Bastin, F., & Nicolay, S. (22 September 2014). Fonction de Riemann généralisée [Paper presentation]. Journées du GDR Analyse Multifractale, Nouan-le-Fuzelier, France. |
![]() ![]() | Esser, C., Kleyntssens, T., Bastin, F., & Nicolay, S. (22 May 2014). Detection of non concave and non increasing multifractal spectra using wavelet leaders (Part I) [Paper presentation]. FNRS Contact Group “Wavelets and Applications”. |
![]() ![]() | Esser, C., Kleyntssens, T., Nicolay, S., & Bastin, F. (25 March 2014). A new multifractal formalism based on wavelet leaders : detection of non concave and non increasing spectra (Part I) [Paper presentation]. Fractal Geometry and Stochastics V, Tabarz, Germany. |
![]() ![]() | Simons, L., Bastin, F., & Nicolay, S. (31 May 2013). An adaptation of $S^{\nu}$ spaces [Paper presentation]. Mini-cours, Analyse fonctionnelle et harmonique et théorie des opérateurs, Lens, France. |
![]() ![]() | Bastin, F., & Simons, L. (2013). About non stationary multiresolution analysis and wavelets. Results in Mathematics, 63 (1), 485-500. doi:10.1007/s00025-011-0212-z ![]() |
![]() ![]() | Bastin, F., Nicolay, S., & Esser, C. (08 May 2012). About Generic Properties of "Nowhere Analyticity" [Paper presentation]. Functional Analysis: Applications to Complex Analysis and Partial Differential Equations, Poznan (Bedlewo), Poland. |
![]() ![]() | Bastin, F., Esser, C., & Nicolay, S. (2012). Prevalence of ''nowhere analyticity''. Studia Mathematica, 210 (3). doi:10.4064/sm210-3-4 ![]() |
![]() ![]() | Aubry, J.-M., & Bastin, F. (2010). Diametral Dimension of some pseudoconvex multiscale spaces. Studia Mathematica, 197 (1), 27-42. doi:10.4064/sm197-1-3 ![]() |
![]() ![]() | Aubry, J.-M., & Bastin, F. (2010). A walk from multifractal analysis to functional analysis with S\nu, and back. In Barral J; Seuret S. (Ed.), Proceedings of ''Fractals and Related Fields'', Monastir, September 2007 (2010). Springer. ![]() |
![]() ![]() | Aubry, J.-M., & Bastin, F. (2009). Advanced topology on the multiscale sequence spaces S-nu. Journal of Mathematical Analysis and Applications, 350 (2), 439-454. doi:10.1016/j.jmaa.2007.11.052 ![]() |
![]() ![]() | Aubry, J.-M., Bastin, F., & Dispa, S. (2007). Prevalenee of multifractal functions in S-nu spaces. Journal of Fourier Analysis and Applications, 13 (2), 175-185. doi:10.1007/s00041-0006-6019-8 ![]() |
![]() ![]() | Aubry, J.-M., Bastin, F., Dispa, S., & Jaffard, S. (2007). The S\nu spaces: new spaces defined with wavelet coefficients and related to multifractal analysis. International Journal of Applied Mathematics and Statistics, 7 (Fe07), 82-95. ![]() |
![]() ![]() | Aubry, J.-M., Bastin, F., Dispa, S., & Jaffard, S. (01 September 2006). Topological properties of the sequence spaces S-nu. Journal of Mathematical Analysis and Applications, 321 (1), 364-387. doi:10.1016/j.jmaa.2005.08.036 ![]() |
![]() ![]() | Bastin, F. (2006). A Riesz basis of wavelets and its dual with quintic deficient splines. Note di Matematica, 25 (1), 55-62. ![]() |
Bastin, F. (2005). Deficient splines and wavelets. In Revista Ciencas Matematicas (Universidad de la Habana) (pp. 13). |
![]() ![]() | Bastin, F., & Nicolay, S. (2004). A note on moments of scaling functions. Rocky Mountain Journal of Mathematics, 34 (4, Winter), 1197-1206. doi:10.1216/rmjm/1181069795 ![]() |
Bastin, F., & Nicolay, S. (2003). A general recurrence relation between the moments of a scaling function. In Group 24 : Physical and Mathematical Aspects of Symmetries (pp. 921-924). Bristol, United Kingdom: Iop Publishing Ltd. |
Antoine, J. P., Bastin, F., De Mol, C., & Toussaint, D. (2003). Coherent states, wavelets and applications G24 - LLN. In Group 24 : Physical and Mathematical Aspects of Symmetries (pp. 844). Bristol, United Kingdom: Iop Publishing Ltd. |
![]() ![]() | Bastin, F., & Nicolay, S. (2003). A general recurrence relation between the moments of a scaling function. Institute of Physics Conference Series, 173, 921-924. |
Bastin, F., & Laubin, P. (2003). Deficient splines wavelets. In Group 24 : Physical and Mathematical Aspects of Symmetries (pp. 915-919). Bristol, United Kingdom: Iop Publishing Ltd. |
![]() ![]() | Bastin, F., Laubin, P., Kerner, R., Antoine, J. P., Metens, S., & Thibon, J. Y. (2003). Deficient splines wavelets. Institute of Physics Conference Series, 173, 915-919. |
![]() ![]() | Bastin, F., Boigelot, C., & Laubin, P. (2003). Spline wavelets in periodic Sobolev spaces and application to high order collocation methods. Revista de la Union Matematica Argentina, 44 (1), 53-74. ![]() |
![]() ![]() | Bastin, F., & Laubin, P. (2002). Quintic deficient spline wavelets. Bulletin de la Société Royale des Sciences de Liège, 71 (3), 121-144. ![]() |
Bastin, F. (2000). Constructions and applications of wavelets in Sobolev spaces. Revista Ciencias Matematicas, 18 (2), 145-177. ![]() |
![]() ![]() | Bastin, F., & Boigelot, C. (1998). Biorthogonal wavelets in H-m(R). Journal of Fourier Analysis and Applications, 4 (6), 749-768. doi:10.1007/BF02479678 ![]() |
Bastin, F., & Laubin, P. (1998). A walk in the the theory of wavelets from L^2(R) to H^s(R). Rendiconti del circolo Matematico Di Palermo (2) Suppl, 52 (1), 239-252. ![]() |
![]() ![]() | Bastin, F., & Laubin, P. (1997). Compactly supported wavelets in Sobolev spaces of integer order. Applied and Computational Harmonic Analysis, 4 (1), 51-57. doi:10.1006/acha.1996.0197 ![]() |
Bastin, F., & Laubin, P. (1997). Regular compactly supported wavelets in Sobolev spaces. Duke Mathematical Journal, 87 (3), 481-508. doi:10.1215/S0012-7094-97-08716-0 ![]() |
Bastin, F., & Laubin, P. (1996). Singular Spectrum and functional properies of kernels. In Functional Analysis, Trier, 1994 (pp. 21-28). Berlin, Germany: de Gruyter. ![]() |
Bastin, F., & Laubin, P. (1995). A general functional characterization of the microlocal singularities. Journal of Mathematical Sciences, The University of Tokyo, 2 (1), 155-164. ![]() |
Bastin, F., & LAUBIN, P. (1994). ON THE FUNCTIONAL-CHARACTERIZATION OF THE ANALYTIC WAVE-FRONT SET OF AN HYPERFUNCTION. Mathematische Nachrichten, 166, 263-271. doi:10.1002/mana.19941660120 ![]() |
Bastin, F. (1992). DISTINGUISHEDNESS OF WEIGHTED FRECHET SPACES OF CONTINUOUS-FUNCTIONS. Proceedings of the Edinburgh Mathematical Society, 35 (Part 2), 271-283. doi:10.1017/S0013091500005538 ![]() |
![]() ![]() | Bastin, F., & Bonet, J. (1990). LOCALLY BOUNDED NONCONTINUOUS LINEAR-FORMS ON STRONG DUALS OF NONDISTINGUISHED KOTHE ECHELON SPACES. Proceedings of the American Mathematical Society, 108 (3), 769-774. doi:10.1090/S0002-9939-1990-1002152-5 ![]() |
Bastin, F. (1990). Weighted spaces of continuous functions. Bulletin de la Société Royale des Sciences de Liège, 59 (1), 3-82. ![]() |
Bastin, F., & Schneiders, J.-P. (1990). On Cartan's A and B theorems. Bulletin de la Société Royale des Sciences de Liège, 59 (3-4), 269-288. ![]() |
Bastin, F. (1989). ON BORNOLOGICAL CV-BAR(X) SPACES. Archiv der Mathematik, 53 (4), 394-398. doi:10.1007/BF01195220 ![]() |
Bastin, F., & Ernst, B. (1988). A criterion for CV(X) to be quasinormable. Results in Mathematics, 14 (3-4), 223-230. doi:10.1007/BF03323227 ![]() |
Bastin, F., & Schmets, J. (1988). A weighted characterization of the locally compact and \sigma compact spaces. Bulletin de la Société Royale des Sciences de Liège, 57 (1-2), 73-78. ![]() |