Chokshi R.J., Zia H. Hot-melt extrusion technique: a review, Iran. J. Pharm. Res. 2004, 3:3-16.
Janssens S., Van Den Mooter G. Review: physical chemistry of solid dispersions. J. Pharm. Pharmacol. 2009, 61:1571-1586.
Linn M., Collnot E.M., Djuric D., Hempel K., Fabian E., Kolter K., Lehr C.M. Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur. J. Pharm. Sci. 2012, 45:336-343.
Amidon G.L., Lennernas H., Shah V.P., Crison J.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995, 12:413-420.
U.S.Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) Guidance for Industry: Waiver of In vivo Bioavailability and Bioequivalence Studies for Immediate-release Solid Oral Dosage forms based on Biopharmaceutics Classification Systems 2000.
Patel A., Sahu D., Dashora A., Garg R., Agraval P., Patel P., Patel P., Patel G. A review of hot melt extrusion technique. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2:2194-2198.
Saerens L., Vervaet C., Remon J.P., De Beer T. Process monitoring and visualization solutions for hot-melt extrusion: a review. J. Pharm. Pharmacol. 2014, 66:180-203.
Chirkot T., Halsey S., Swanborough A. Monitoring the output of pharmaceutical hot melt extruders with near infrared spectroscopy. NIR News 2014, 25:15-18.
Crowley M.M., Zhang F., Repka M.A., Thumma S., Upadhye S.B., Battu S.K., McGinity J.W., Martin C. Pharmaceutical applications of hot-melt extrusion: Part I. Drug Dev. Ind. Pharm. 2007, 33:909-926.
Jagtap P.S., Jain S.S., Dand N., Jadhav K.R., Kadam V.J. Hot melt extrusion technology, approach of solubility enhancement: a brief review. Pharm. Lett. 2012, 4:42-53.
Kipping T., Rein H. A new method for the continuous production of single dosed controlled release matrix systems based on hot-melt extruded starch: analysis of relevant process parameters and implementation of an in-process control. Eur. J. Pharm. Biopharm. 2013, 84:156-171.
Maniruzzaman M., Boateng J.S., Snowden M.J., Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm. 2012, 2012:1-9.
Plumb K. Continuous processing in the pharmaceutical industry: changing the mind set. Chem. Eng. Res. Des. 2005, 83:730-738.
Sarode A.L., Sandhu H., Shah N., Malick W., Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug-polymer interactions on supersaturation. Eur. J. Pharm. Sci. 2013, 48:371-384.
Sarode A.L., Sandhu H., Shah N., Malick W., Zia H. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability. Mol. Pharm. 2013, 10:3665-3675.
Khatry S., Abbulu K. Melt extrusion - an overview. Int. J. Pharm. Technol. 2011, 3:685-703.
Bhardwaj S.P., Arora K.K., Kwong E., Templeton A., Clas S.-D., Suryanarayanan R. Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol. Pharm. 2012, 10:694-700.
Hancock B.C., Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 1997, 86:1-12.
Laitinen R., Löbmann K., Strachan C.J., Grohganz H., Rades T. Emerging trends in the stabilization of amorphous drugs. Int. J. Pharm. 2013, 453:65-79.
Leuner C., Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50:47-60.
Shah S., Maddineni S., Lu J., Repka M.A. Melt extrusion with poorly soluble drugs. Int. J. Pharm. 2013, 453:233-252.
Van Den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 2012, 9:e79-e85.
Van den Mooter G., Wuyts M., Blaton N., Busson R., Grobet P., Augustijns P., Kinget R. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur. J. Pharm. Sci. 2000, 12:261-269.
Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur. J. Pharm. Biopharm. 2002, 54:107-117.
Chieng N., Rades T., Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J. Pharm. Biomed. Anal. 2011, 55:618-644.
Li Y., Pang H., Guo Z., Lin L., Dong Y., Li G., Lu M., Wu C. Interactions between drugs and polymers influencing hot melt extrusion. J. Pharm. Pharmacol. 2014, 66:148-166.
U.S.Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) Guidance for Industry: PAT - A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance 2004.
Hinz D.C. Process analytical technologies in the pharmaceutical industry: the FDA's PAT initiative. Anal. Bioanal. Chem. 2006, 384:1036-1042.
Chalus P., Roggo Y., Ulmschneider M. La spectroscopie Raman: un outil pour répondre à l'initiative Process Analytical Technology (PAT) dans l'industrie pharmaceutique. Spectra Anal. 2006, 252:17-22.
Rathore A.S., Bhambure R., Ghare V. Process analytical technology (PAT) for biopharmaceutical products. Anal. Bioanal. Chem. 2010, 398:137-154.
Krier F., Mantanus J., Sacré P.-Y., Chavez P.-F., Thiry J., Pestieau A., Rozet E., Ziemons E., Hubert P., Evrard B. PAT tools for the control of co-extrusion implants manufacturing process. Int. J. Pharm. 2013, 458:15-24.
Almeida A., Saerens L., De Beer T., Remon J.P., Vervaet C. Upscaling and in-line process monitoring via spectroscopic techniques of ethylene vinyl acetate hot-melt extruded formulations. Int. J. Pharm. 2012, 439:223-229.
Anastas P.T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem. 1999, 29:167-175.
Armenta S., Garrigues S., de la Guardia M. Green analytical chemistry. Trends Anal. Chem. 2008, 27:497-511.
Guardia M.D.L. Green analytical chemistry. Trends Anal. Chem. 2010, 29:577.
Moros J., Garrigues S., Guardia M.D.L. Vibrational spectroscopy provides a green tool for multi-component analysis. Trends Anal. Chem. 2010, 29:578-591.
Otto M. Chemometrics: Statistics and Computer Application in Analytical Chemistry 2007, Wiley VCH, Chichester, West Sussex, UK. 2nd ed.
Rosan A.M. Green chemistry: an introductory text. J. Chem. Educ. 2003, 80:1141-1142.
Garrigues S., De la Guardia M. Non-invasive analysis of solid samples. Trends Anal. Chem. 2013, 43:161-173.
Tucker J.L. Green chemistry, a pharmaceutical perspective. Org. Process Res. Dev. 2006, 10:315-319.
Clarke E.G.C. Clarke's Analysis of Drugs and Poisons 2004, Pharmaceutical Press, London. 3rd ed.
De Beer T., Burggraeve A., Fonteyne M., Saerens L., Remon J.P., Vervaet C. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 2011, 417:32-47.
De Beer T.R.M., Bodson C., Dejaegher B., Walczak B., Vercruysse P., Burggraeve A., Lemos A., Delattre L., Heyden Y.V., Remon J.P., Vervaet C., Baeyens W.R.G. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process. J. Pharm. Biomed. Anal. 2008, 48:772-779.
Vankeirsbilck T., Vercauteren A., Baeyens W., Van der Weken G., Verpoort F., Vergote G., Remon J.P. Applications of Raman spectroscopy in pharmaceutical analysis. Trends Anal. Chem. 2002, 21:869-877.
Coates P.D., Barnes S.E., Sibley M.G., Brown E.C., Edwards H.G.M., Scowen I.J. In-process vibrational spectroscopy and ultrasound measurements in polymer melt extrusion. Polymer 2003, 44:5937-5949.
Luypaert J., Massart D.L., Vander Heyden Y. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 2007, 72:865-883.
Roggo Y., Gendrin C., Spiegel C. Intérêt de l'imagerie chimique proche infrarouge pour l'industrie pharmaceutique. Spectra Anal. 2007, 258:26-30.
Sasic S., Ozaki Y. Raman, Infrared and Near-Infrared Chemical Imaging 2010, John Wiley & Sons, NJ.
Sacré P.Y., De Bleye C., Chavez P.F., Netchacovitch L., Hubert P., Ziemons E. Data processing of vibrational chemical imaging for pharmaceutical applications. J. Pharm. Biomed. Anal. 2014, 101:123-140.
Amigo J.M. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem. 2010, 398:93-109.
Gordon K.C., McGoverin C.M. Raman mapping of pharmaceuticals. Int. J. Pharm. 2011, 417:151-162.
Gendrin C., Roggo Y., Collet C. Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. J. Pharm. Biomed. Anal. 2008, 48:533-553.
Sasic S., Clark D.A., Mitchell J.C., Snowden M.J. A comparison of Raman chemical images produced by univariate and multivariate data processing - a simulation with an example from pharmaceutical practice. Analyst 2004, 129:1001-1007.
Matero S., Den Berg F.V., Poutiainen S., Rantanen J., Pajander J. Towards better process understanding: chemometrics and multivariate measurements in manufacturing of solid dosage forms. J. Pharm. Sci. 2013, 102:1385-1403.
Djuris J., Nikolakakis I., Ibric S., Djuric Z., Kachrimanis K. Preparation of carbamazepine-Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur. J. Pharm. Biopharm. 2013, 84:228-237.
Simone E., Saleemi A.N., Nagy Z.K. Application of quantitative Raman spectroscopy for the monitoring of polymorphic transformation in crystallization processes using a good calibration practice procedure. Chem. Eng. Res. Des. 2014, 92:594-611.
Lakshman J.P., Cao Y., Kowalski J., Serajuddin A.T.M. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 2008, 5:994-1002.
Liu X., Lu M., Guo Z., Huang L., Feng X., Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm. Res. 2012, 29:806-817.
Dhumal R., Kelly A., York P., Coates P., Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm. Res. 2010, 27:2725-2733.
Verhoeven E., De Beer T.R.M., Van den Mooter G., Remon J.P., Vervaet C. Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion. Eur. J. Pharm. Biopharm. 2008, 69:312-319.
Song Y., Wang L., Yang P., Wenslow R.M., Tan B., Zhang H., Deng Z. Physicochemical characterization of felodipine-kollidon VA64 amorphous solid dispersions prepared by hot-melt extrusion. J. Pharm. Sci. 2013, 102:1915-1923.
Sathigari S.K., Radhakrishnan V.K., Davis V.A., Parsons D.L., Babu R.J. Amorphous-state characterization of efavirenz-polymer hot-melt extrusion systems for dissolution enhancement. J. Pharm. Sci. 2012, 101:3456-3464.
Zecevic D.E., Wagner K.G. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools. J. Pharm. Sci. 2013, 102:2297-2310.
Andrews G.P., Abudiak O.A., Jones D.S. Physicochemical characterization of hot melt extruded bicalutamide-polyvinylpyrrolidone solid dispersions. J. Pharm. Sci. 2010, 99:1322-1335.
Andrews G.P., Abu-Diak O., Kusmanto F., Hornsby P., Hui Z., Jones D.S. Physicochemical characterization and drug-release properties of celecoxib hot-melt extruded glass solutions. J. Pharm. Pharmacol. 2010, 62:1580-1590.
Zhang K., Yu H., Luo Q., Yang S., Lin X., Zhang Y., Tian B., Tang X. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Eur. J. Pharm. Biopharm. 2013, 85:1285-1292.
Apruzzese F., Pato J., Balke S.T., Diosady L.L. In-line measurement of residence time distribution in a co-rotating twin-screw extruder. Food Res. Int. 2003, 36:461-467.
Puaux J.P., Bozga G., Ainser A. Residence time distribution in a corotating twin-screw extruder. Chem. Eng. Sci. 2000, 55:1641-1651.
Reitz E., Podhaisky H., Ely D., Thommes M. Residence time modeling of hot melt extrusion processes. Eur. J. Pharm. Biopharm. 2013, 85:1200-1205.
Kelly A.L., Gough T., Dhumal R.S., Halsey S.A., Paradkar A. Monitoring ibuprofen-nicotinamide cocrystal formation during solvent free continuous cocrystallization (SFCC) using near infrared spectroscopy as a PAT tool. Int. J. Pharm. 2012, 426:15-20.
Troup G.M., McKelvey C.A., Schenck L., Lowinger M., Rudeen B., Sinha A., Higgins J.P. Process analytical technology for improved process understanding and control of a hot melt extrusion process. Annu. Tech. Conf. ANTEC Conf. Proc. 2010, 3:1965-1969.
Wahl P.R., Treffer D., Mohr S., Roblegg E., Koscher G., Khinast J.G. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion. Int. J. Pharm. 2013, 455:159-168.
Tumuluri V.S., Kemper M.S., Lewis I.R., Prodduturi S., Majumdar S., Avery B.A., Repka M.A. Off-line and on-line measurements of drug-loaded hot-melt extruded films using Raman spectroscopy. Int. J. Pharm. 2008, 357:77-84.
Saerens L., Dierickx L., Lenain B., Vervaet C., Remon J.P., De Beer T. Raman spectroscopy for the in-line polymer-drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur. J. Pharm. Biopharm. 2011, 77:158-163.
Saerens L., Ghanam D., Raemdonck C., Francois K., Manz J., Krüger R., Krüger S., Vervaet C., Remon J.P., De Beer T. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12mm twin screw extruder using Raman spectroscopy. Eur. J. Pharm. Biopharm. 2014, 87:606-615.
Saerens L., Vervaet C., Remon J.P., De Beer T. Visualization and process understanding of material behavior in the extrusion barrel during a hot-melt extrusion process using Raman spectroscopy. Anal. Chem. 2013, 85:5420-5429.
Saerens L., Segher N., Vervaet C., Remon J.P., De Beer T. Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion. Anal. Chim. Acta 2014, 806:180-187.
Saerens L., Dierickx L., Quinten T., Adriaensens P., Carleer R., Vervaet C., Remon J.P., De Beer T. In-line NIR spectroscopy for the understanding of polymer-drug interaction during pharmaceutical hot-melt extrusion. Eur. J. Pharm. Biopharm. 2012, 81:230-237.
Park J.-B., Kang C.-Y., Kang W.-S., Choi H.-G., Han H.-K., Lee B.-J. New investigation of distribution imaging and content uniformity of very low dose drugs using hot-melt extrusion method. Int. J. Pharm. 2013, 458:245-253.
Widjaja E., Seah R.K.H. Application of Raman microscopy and band-target entropy minimization to identify minor components in model pharmaceutical tablets. J. Pharm. Biomed. Anal. 2008, 46:274-281.
Fule R., Amin P. Development and evaluation of lafutidine solid dispersion via hot melt extrusion: investigating drug-polymer miscibility with advanced characterisation. Asian J. Pharm. Sci. 2014, 9:92-106.
Vajna B., Pataki H., Nagy Z., Farkas I., Marosi G. Characterization of melt extruded and conventional Isoptin formulations using Raman chemical imaging and chemometrics. Int. J. Pharm. 2011, 419:107-113.
Docoslis A., Huszarik K.L., Papageorgiou G.Z., Bikiaris D., Stergiou A., Georgarakis E. Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder X-ray diffraction. AAPS J. 2007, 9:E361-E370.
Qi S., Belton P., Nollenberger K., Gryczke A., Craig D.Q.M. Compositional analysis of low quantities of phase separation in hot-melt-extruded solid dispersions: a combined atomic force microscopy, photothermal Fourier-transform infrared microspectroscopy, and localised thermal analysis approach. Pharm. Res. 2011, 28:2311-2326.
Karavas E., Georgarakis M., Docoslis A., Bikiaris D. Combining SEM, TEM, and micro-Raman techniques to differentiate between the amorphous molecular level dispersions and nanodispersions of a poorly water-soluble drug within a polymer matrix. Int. J. Pharm. 2007, 340:76-83.
Vigh T., Drávavölgyi G., Sóti P.L., Pataki H., Igricz T., Wagner I., Vajna B., Madarász J., Marosi G., Nagy Z.K. Predicting final product properties of melt extruded solid dispersions from process parameters using Raman spectrometry. J. Pharm. Biomed. Anal. 2014, 98:166-177.
Widjaja E., Kanaujia P., Lau G., Ng W.K., Garland M., Saal C., Hanefeld A., Fischbach M., Maio M., Tan R.B.H. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis. Eur. J. Pharm. Sci. 2011, 42:45-54.
Fule R., Meer T., Amin P., Dhamecha D., Ghadlinge S. Preparation and characterisation of lornoxicam solid dispersion systems using hot melt extrusion technique. J. Pharm. Investig. 2014, 44:41-59.
Windbergs M., Haaser M., McGoverin C.M., Gordon K.C., Kleinebudde P., Strachan C.J. Investigating the relationship between drug distribution in solid lipid matrices and dissolution behaviour using Raman spectroscopy and mapping. J. Pharm. Sci. 2010, 99:1464-1475.
Scoutaris N., Vithani K., Slipper I., Chowdhry B., Douroumis D. SEM/EDX and confocal Raman microscopy as complementary tools for the characterization of pharmaceutical tablets. Int. J. Pharm. 2014, 470:88-98.
Albers J., Alles R., Matthée K., Knop K., Nahrup J.S., Kleinebudde P. Mechanism of drug release from polymethacrylate-based extrudates and milled strands prepared by hot-melt extrusion. Eur. J. Pharm. Biopharm. 2009, 71:387-394.
Agrawal A.M., Dudhedia M.S., Patel A.D., Raikes M.S. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int. J. Pharm. 2013, 457:71-81.
Chokshi R.J., Shah N.H., Sandhu H.K., Malick A.W., Zia H. Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration. J. Pharm. Sci. 2008, 97:2286-2298.
Guns S., Mathot V., Martens J.A., Van Den Mooter G. Upscaling of the hot-melt extrusion process: comparison between laboratory scale and pilot scale production of solid dispersions with miconazole and Kollicoat® IR. Eur. J. Pharm. Biopharm. 2012, 81:674-682.
Kumar A., Ganjyal G.M., Jones D.D., Hanna M.A. Digital image processing for measurement of residence time distribution in a laboratory extruder. J. Food Eng. 2006, 75:237-244.
Wang Y., Steinhoff B., Brinkmann C., Alig I. In-line monitoring of the thermal degradation of poly(l-lactic acid) during melt extrusion by UV-vis spectroscopy. Polymer 2008, 49:1257-1265.
Treffer D., Wahl P.R., Hörmann T.R., Markl D., Schrank S., Jones I., Cruise P., Mürb R.-K., Koscher G., Roblegg E., Khinast J.G. In-line implementation of an image-based particle size measurement tool to monitor hot-melt extruded pellets. Int. J. Pharm. 2014, 466:181-189.
Qi S., Gryczke A., Belton P., Craig D.Q.M. Characterisation of solid dispersions of paracetamol and EUDRAGIT® E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis. Int. J. Pharm. 2008, 354:158-167.