[en] We report the results of electrical resistivity measurements carried out on well-sintered
La0.7Ca0.3MnO3/Mn3O4 composite samples with almost constant composition of the magnetoresistive manganite phase (La0.7Ca0.3MnO3). A percolation threshold (phi c) occurs when the La0.7Ca0.3MnO3 volume fraction is ~ 0.19. The dependence of the electrical resistivity rho as a function of La0.7Ca0.3MnO3 volume fraction fLCMO
can be described by percolationlike phenomenological equations. Fitting the conducting regime (fLCMO > phic) by the percolation power law rho # (fLCMO - phic)^(-t) returns a critical exponent value of 2.0±0.2 at room temperature and 2.6±0.2 at 5 K. The increase of t is ascribed to the influence of the grain boundaries on the electrical conduction process at low temperature.
(C) 2007 The American Physical Society.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. ADPHAH 0001-8732 10.1080/000187399243455 48, 167 (1999).
B. Vertruyen, R. Cloots, A. Rulmont, G. Dhalenne, M. Ausloos, and Ph. Vanderbemden, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1410885 90, 5692 (2001).
Ph. Vanderbemden, B. Vertruyen, A. Rulmont, R. Cloots, G. Dhalenne, and M. Ausloos, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.68.224418 68, 224418 (2003).
D. Das, A. Saha, S. E. Russek, R. Raj, and D. Bahadur, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1556260 93, 8301 (2003).
D. Das, P. Chowdhury, R. N. Das, C. M. Srivastava, A. K. Nigam, and D. J. Bahadur, J. Magn. Magn. Mater. JMMMDC 0304-8853 10.1016/S0304-8853(01)00859-9 238, 178 (2002).
Z. C. Xia, S. L. Yuan, W. Feng, L. J. Zhang, G. H. Zhang, J. Tang, L. Liu, D. W. Liu, Q. H. Zheng, L. Chen, Z. H. Fang, S. Liu, and C. Q. Tang, Solid State Commun. SSCOA4 0038-1098 127, 567 (2003).
D. Das, C. M. Srivastava, D. Bahadur, A. K. Nigam, and S. K. Malik, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/16/23/024 16, 4089 (2004).
P. Kameli, H. Salamati, M. Eshraghi, and M. R. Mohammadizadeh, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.2032614 98, 043908 (2005).
B. X. Huang, Y. H. Liu, R. Z. Zhang, X. Yuan, C. J. Wang, and L. M. Mei, J. Phys. D JPAPBE 0022-3727 10.1088/0022-3727/36/16/301 36, 1923 (2003).
O. A. Shlyakhtin, K. H. Shin, and Y. J. Oh, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1446126 91, 7403 (2002).
D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild, and P. R. Duncombe, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.124577 75, 995 (1999).
L. Balcells, A. E. Carrillo, B. Martinez, and J. Fontcuberta, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.123245 74, 4014 (1999).
L. E. Hueso, J. Rivas, F. Rivadulla, and M. A. Lopez-Quintela, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1338518 89, 1746 (2001).
A. Gupta, R. Ranijt, C. Mitra, P. Raychaudhuri, and R. Pinto, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1342044 78, 362 (2001).
L. E. Hueso, J. Rivas, F. Rivadulla, and M. A. Lopez-Quintela, J. Non-Cryst. Solids JNCSBJ 0022-3093 287, 324 (2001).
B. Vertruyen, J.-F. Fagnard, Ph. Vanderbemden, M. Ausloos, A. Rulmont, and R. Cloots, J. Eur. Ceram. Soc. JECSER 0955-2219 (to be published).
B. Vertruyen, A. Rulmont, R. Cloots, J.-F. Fagnard, M. Ausloos, I. Vandriessche, and S. Hoste, J. Mater. Sci. JMTSAS 0022-2461 40, 117 (2005).
M. W. Barsoum, Fundamentals of Ceramics (Institute of Physics, Bristol, 2003), p. 79.
J. E. Evetts, M. G. Blamire, N. D. Mathur, S. P. Isaac, B. S. Teo, L. F. Cohen, and J. L. MacManus-Driscoll, Philos. Trans. R. Soc. London, Ser. A PTRMAD 0962-8428 10.1098/rsta.1998.0237 356, 1593 (1998).
H. Scher and R. Zallen, J. Chem. Phys. JCPSA6 0021-9606 20, 325 (1970).
A. de Andres, M. Garcia-Hernandez, and J. L. Martinez, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.60.7328 60, 7328 (1999).
D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc. JACTAW 0002-7820 10.1111/j.1151-2916.1990.tb07576.x 73, 2187 (1990).