[en] Increased resistance to beta-lactam antibiotics is mainly due to beta-lactamases. X-ray structures of zinc beta-lactamases unraveled the coordination of the metal ions, but their mode of action remains unclear. Recently, enzymes in which one of the zinc ligands was mutated have been characterized and their catalytic activity against several beta-lactam antibiotics measured. A molecular modeling study of these enzymes was performed here to explain the catalytic activity of the mutants. Coordination around the zinc ions influences the way the tetrahedral intermediate is bound; any modification influences the first recognition of the substrate by the enzyme. For all the studied mutants, at least one of the interactions fails, inducing a loss of catalytic efficiency compared to the wild type. The present studies show that the enzyme cavity is a structure of high plasticity both structurally and mechanistically and that local modifications may propagate its effects far from the mutated amino acid.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Prosperi, Christelle ; Université de Liège - ULiège > Département de physique > Département de physique
De Seny, Dominique ; Centre Hospitalier Universitaire de Liège - CHU > Rhumatologie
Llabres, Gabriel ; Université de Liège - ULiège > Département de physique > Département de physique
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Wang Z., Fast W, Valentine A. M. and Benkovic S. J. (1999) Metallo-β-lactamase: structure and mechanism. Curr. Opin. Chem. Biol. 3: 614-622
Carfi A., Pares S., Duee E., Galleni M., Duez C., Frere J. M. et al. (1995) The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 14: 4914-4921
Carfi A., Duee E., Paul-Soto R., Galleni M., Frere J. M. and Dideberg O. (1998) X-ray structure of the ZnII beta-lactamase from Bacteroides fragilis in an orthorhombic crystal form. Acta Crystallogr. D Biol. Crystallogr. 54: 45-57
Carfi A., Duee E., Galleni M., Frere J.-M. and Dideberg O. (1998) 1.85 Å resolution structure of the zincII β-lactamase from Bacillus cereus. Acta Crystallogr. D Biol. Crystallogr. D54: 313-323
Fabiane S. M., Sohi M. K., Wan T., Payne D. J., Bateson J. H., Mitchell T. et al. (1998) Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 Å resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37: 12404-12411
Concha N. O., Rasmussen B. A., Bush K. and Herzberg O. (1996) Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure 4: 823-836
Concha N. O., Janson C. A., Rowling P., Pearson S., Cheever C. A., Clarke B. P. et al. (2000) Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39: 4288-4298
Ullah J. H., Walsh T. R., Taylor I. A., Emery D. C., Verma C. S., Gamblin S. J. et al. (1998) The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution. J. Mol. Biol. 284: 125-136
Baldwin G. S., Galdes A., Hill H. A., Smith B. E., Waley S. G. and Abraham E. P. (1978) Histidine residues of zinc ligands in beta-lactamase II. Biochem. J. 175: 441-447
Seny D. de, Heinz U., Wommer S., Kiefer M., Meyer-Klaucke W., Galleni M. et al. (2001) Metal ion binding and coordination geometry for wild type and mutants of metallo-β-lactamase from Bacillus cereus 569/H/9 (BcII): a combined thermodynamic, kinetic, and spectroscopic approach. J. Biol. Chem. 276: 45065-45078
Seny D. de, Prosperi-Meys C., Bebrone C., Rossolini G.M., Page M., Noel E et al. (2002) Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-βlactamase. Biochem. J. 363: 687-696
Prosperi-Meys C., Wouters J., Galleni M. and Lamotte-Brasseur J. (2001) Substrate binding and catalytic mechanism of class B β-lactamases: a molecular modelling study. Cell. Mol. Life Sci. 58: 2136-2143
Pearlman D. C. D., Caldwell J. A., Ross W. S., Cheathman T. E., Ferguson D. M., Seibel G. L. et al. (1986) AMBER 4.1. University of California, San Francisco
Galleni M., Lamotte-Brasseur J., Rossolini G. M., Spencer J., Dideberg O. and Frere J. M. (2001) Standard numbering scheme for class B beta-lactamases. Antimicrob. Agents Chemother. 45: 660-663
Li Z., Rasmussen B. A. and Herzberg O. (1999) Structural consequences of the active site substitution Cys181 Ser in metallo-β-lactamase from Bacteroides fragilis. Protein Sci. 8: 249-252
Shih H. H. L., Brady J. and Karplus M. (1985) Structure of proteins with single-site mutations: a minimum perturbation approach. Proc. Natl. Acad. Sci. USA 82: 1697-1700
Dewar M. J. S., Zoebisch E. G., Healy E. F. and Stewart J. J. P. (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107: 3902-3909
Schrauber H., Eisenhaber F. and Argos P. (1993) Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J. Mol. Biol. 230: 592-612
Chantalat L., Duee E., Galleni M., Frere J.-M. and Dideberg O. (2000) Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-β-lactamase. Protein Sci. 9: 1402-1406
Yang Y., Keeney D., Tang X.-J., Canfield N. and Rasmussen B. A. (1999) Kinetic properties and metal content of the metalloβ-lactamase CcrA harboring selective amino acid substitutions. J. Biol. Chem. 274: 15706-15711
Zervosen A., Valladares M. H., Devreese B., Prosperi-Meys C., Adolph H.-W., Mercuri P. S. et al. (2001) Inactivation of Aeromonas hydrophila metallo-β-lactamase by cephamycins and moxalactam. Eur. J. Biochem. 268: 3840-3850
Nagano R., Adachi Y., Imamura H., Yamada K., Hashizume T. and Morishima H. (1999) Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases. Antimicrob. Agents Chemother. 43: 2497-2503
Walter M. W., Felici A., Galleni M., Soto R. P., Adlington R. M., Baldwin J. E. et al. (1996) Trifluoromethyl alcohol and ketone inhibitors of metallo-β-lactamases. Bioorg. Med. Chem. Lett. 6: 2455-2458
Walter M. W., Valladares M. H., Adlington R. M., Amicosante G., Baldwin J. E., Frere J.-M. et al. (1999) Hydroxamate inhibitors of Aeromonas hydrophila AE036 metallo-β-lactamase. Bioorg. Chem. 27: 35-40
Toney J. H., Fitzgerald P. M., Grover-Sharma N., Olson S. H., May W. J., Sundelof J. G. et al. (1998) Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. Chem. Biol. 5: 185-196