Adebowale K.O., Olu-Owolabi B.I., Olayinka O.O. & Lawal O.S., 2005. Effect of heat moisture treatment and annealing on physicochemical properties of red sorghum starch. Afr. J. Biotechnol, 4(9), 928-933.
Agu R.C. & Palmer G.H., 1996a. Enzymic breakdown of endosperm proteins of sorghum at different malting temperatures. J. Inst. Brew., 102(6), 415-418.
Agu R.C. et al., 1996b. Effect of low kilning temperatures on diastase and cellulase development of Nigerian malted sorghum {Sorghum bicolor). Process Biochem., 31(1), 63-68.
Agu R.C. & Palmer G.H., 1997a. Effect of mashing procedures on some sorghum varieties germinated at different temperatures. Process Biochem., 32(2), 147-158.
Agu R.C. & Palmer G.H., 1997b. The effect of temperature on the modifcation of sorghum and barley during malting. Process Biochem., 32(6), 501-507.
Agu R.C. & Palmer G.H., 1998. A reassessment of sorghum for lager-beer brewing. Bioresour. Technol., 66,253-261.
Agu R.C. & Palmer G.H., 1999. Comparative development of soluble nitrogen in the malts of barley and sorghum. Process Biochem., 35,497-502.
Ahmed S.B., Mahgoub S.A. & Babiker B.E., 1996. Changes in tannin and cyanide contents and diastic activity during germination and the effect of traditional processing on cyanide content of sorghum cultivars. Food Chem., 56(2), 159-162.
Aisien A.O., Palmer G.H. & Stark J.R., 1986. The ultrastructure of germinating sorghum and millet grains. J. Inst. Brew., 92, 162-167.
Aniche G.N. & Palmer G.H., 1990. Development of amylotic activities in sorghum and barley malt. J. Inst. Brew.,96,311-319.
Arbab M.E. & El Tinay A.H., 1997. Effect of cooking and treatment with sodium bisulphite or ascorbic acid on the in vitro protein digestibility of two sorghum cultivars. Food Chem., 59, 339-343.
Awika J.M. et al., 2003. Processing of sorghum {Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agric. Food Chem., 51, 5516-5521.
Awika J.M. & Rooney L.W., 2004. Sorghumphytochemicals and their potential impact on human health. Phytochemistry, 65, 1199-1221.
Bajomo M.F. & Young TW., 1994. Fermentation of worts made from 100% raw sorghum and enzymes. J. Inst. Brew., 100, 79-84
Bamforth C. & Barclay A., 1993. Malting technology and the uses of malt. In: MacGregorA. & BhattyR., eds. Barley: chemistry and technology. St Paul, MN, USA: American Association of Cereal Chemists, Inc., 297-354.
Belton RS., Delgadillo L, Halford N.G. & Shewry RR., 2006. Kahrin structure and functionality. J. Cereal Sci., 44, 272-286.
Beta T, Corke H., Taylor J.R.N. & Rooney L.W., 1999. Effect of steeping treatment on pasting and thermal properties of sorghum starches. Cereal Chem., 78(3), 303-306.
Beta T., Rooney L.W., Marovatsanga L.T & Taylor J.R.N., 2000. Effect of chemical treatment on polyphenols and malt quality in sorghum. J. Cereal Sci., 31, 295-302.
Boudries N. et al., 2009. Physicochemical and functional properties of starches from sorghum cultivated in the Sahara of Algeria. Carbohydr. Polym., 78, 475-480.
Briggs D.E., Boulton C.A., Brookes PA. & Stevens R., 2004. Brewing science and practice. Cambridge, UK: Woodhead Publishing Limited.
Bröhan M., Jerkovic V. & Collin S., 2011. Potentiality of red sorghum for producing stilbenoid-enriched beers with high antioxidant activity. J. Agric. Food Chem., 59, 4088-4094.
Butler L.G., Riedl D.J., Lebryk D.G. & Blytt H.J., 1984 Interaction of proteins with sorghum tannin: mechanism, specifcity and signifcance. J. Am. Oil Chem. Soc, 61, 916-920.
Bwanganga T.J.-C, Béra F. & Thonart P., 2012. Optimizing red sorghum malt quality when Bacillus subtilis is used during steeping to control mould growth. J. Inst. Brew., 118(3), 295-304.
Bwanganga T.J.-C, Béra F & Thonart P., 2013a. Modelling the (3-amylase activity during red sorghum malting when Bacillus subtilis is used to control mould growth. J. Cereal Sci., 57, 115-119.
Bwanganga T.J.-C, Bera F & Thonart P., 2013b. Effect of the use of dilute alkaline prior to Bacillus subtilis-based biocontrol steeping and germination conditions on red sorghum malt (glucanase activities and residual [glucans. J. Cereal Sci., 58, 148-155.
Dewar J., Taylor J.R.N. & Berjak R, 1997a. Determination of improved steeping conditions for sorghum malting. J. Cereal Sci, 26, 129-136.
Dewar J. & Orovan E., 1997b. Effect of alkaline steeping on water uptake and malt quality in sorghum. J. Inst. Brew., 103, 283-285.
Dicko M.H. et al., 2006. Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr. J. Biotechnol, 5(5), 384-395.
Dufour J.P., Mélotte L. & Srebrnik S., 1992. Sorghum malts for the production of a lager beer. J. Am. Soc. Brew. Chem., 50, 110-119.
Duodu K.G. et al., 2002. Effect of grain organizational structure and cooking on sorghum and maize in vitro protein digestibility. J. Cereal Sci, 35, 161-174.
Duodu K.G., Taylor J.R.N., Belton P.S. & Hamaker B.R., 2003. Factors affecting sorghum protein digestibility. J. Cereal Sci, 38, 117-131.
Dykes L. & Rooney L.W., 2007. Phenolic compounds in cereal grains and their health benefts. Cereal Foods World, 52(3), 105-111.
Earp C.F., Akingbala J.O., Ring S.H. & Rooney L.W., 1981. Evaluation of several methods to determine tannins in sorghums with varying kernel characteristics. Cereal Chem., 58, 234-238.
Elmaki H.B., Babiker E.E. & El Tinay A.H., 1999. Changes in chemical composition, grain malting, starch and tannin contents and protein digestibility during germination of sorghum cultivars. Food Chem., 64, 331-336.
Emmambux N.M. & Taylor J.R.N., 2003. Sorghum kafrin interaction with various phenolic compounds. J. Sci. Food Agric, 83,402-407.
Engan S., 1970. Wort composition and beer flavour, the infuence of some amino acids on the formation of higher aliphatic alcohols and esters. J. Inst. Brew., 76, 254-261.
Etokakpan O.U., 1992. Comparative studies of the (3-D-glucan released into sorghum and barley worts. J. Inst. Brew., 98, 301-304.
Etokakpan O.U. & Palmer G.H., 1990. Comparative studies of the development of endosperm-degrading enzymes in malting sorghum and barley. World J. Microbiol. Biotechnol, 6(4), 408-417.
Evans D.E. et al., S.d. Potential to modify wort fermentability by the thermostability of the β-amylase, β-amylase and limit dextrinase diastatic power enzymes. Sandy Bay, Australia: TIAR, University of Tasmania; Glen Osmond, Australia: University of Adelaide.
Evans D.J. & Taylor J.R.N., 1990. Infuence of cultivar and germination conditions on proteolytic activities in sorghum malt. J. Inst. Brew., 96, 399-402.
Glennie CW., 1984. Endosperm cell wall modifcation in sorghum grain during germination. Cereal Chem., 61, 285-289.
Goode D.L., Halbert C. & Arendt E.K., 2002. Mashing studies with unmalted sorghum and barley. J. Inst. Brew., 108(4), 465-473.
Hahn D.H., Rooney L.W. & Earp C.E, 1984. Tannins and phenols of sorghum. Cereal Foods World, 29, 776-779.
Hamaker B.R. et al., 1995. Effcient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal Chem., 72, 583-588.
Igyor M.A., Ogbonna A.C. & Palmer G.H., 2001. Effect of malting temperature and mashing methods on sorghum wort composition and beer flavor. Process Biochem., 36, 1039-1044.
Iwuoha C.I. & Aina J.O., 1997. Effects of steeping condition and germination time on the alpha-amylase activity, phenolics content and malting loss of Nigerian local red and hybrid short Kaura sorghum malts. Food Chem., 58(4), 289-295.
Jensen L.G., 1994. Developmental patterns of enzymes and proteins during mobilization of endosperm stores in germinating barley grains. Hereditas, 12, 53-72.
Jones B.L., 2001. Interactions of malt and barley (Hordeum vulgare L.) endoproteinases with their endogenous inhibitors. J. Agric. Food Chem., 49, 5975-5981.
Laitila A., 2007. Microbes in the tailoring of barley malt properties. Academic dissertation in microbiology: University of Helsinki (Finland).
Lasztity R., 1996. Sorghum proteins. In: Lasztity R., ed. The chemistry of cereal proteins. 2nd ed. Boca Raton, FL, USA: CRC Press, 227-248.
Lefyedi M.L. & Taylor J.R.N., 2006. Effect of dilute alkaline steeping on the microbial contamination, toxicity and diastatic power of sorghum malt. J. Inst. Brew., 112, 108-116.
Lefyedi M.L. & Taylor J.R.N., 2007. Control of the growth of coliforms and moulds in sorghum malting by bacterial and yeast cultures. J. Inst. Brew., 113(2), 123-129.
Lewis M.J. & Bamforth C.W., 2006. Essays in brewing science. Davis, CA, USA: University of California.
Mazhar H. & Chandrashekar A., 1995. Quantifcation and distribution of kafrins in the kernels of sorghum cultivars varying in endosperm hardness. J. Cereal Sci, 21, 155-162.
Mundy J., 1982. Isolation and characterization of two immunologically distinct forms of a-amylase and a 13-amylase from seeds of germinated Sorghum bicolor (L.) Moench. Carlsberg Res. Commun., 47, 263-274.
Murty D.S. & Renard C, 2001. Sorghum. In: Crop production in tropical Africa. Brussels: DGIC, Ministry of Foreign Affairs, External Trade and International Cooperation.
Myer R.O. & Gorbet D.W., 1985. Waxy and normal grain sorghums with varying tannin contents in diets for young pigs. Anim. Feed Sci. Technol., 12, 179-186.
Nwanguma B.C. & Eze M.O., 1996. Changes in the concentrations of the polyphenolic constituents of sorghum during malting and mashing. J. Sci. Food Agric.,70, 162-166.
Odibo F.J.C., Nwankwo L.N. & Agu R.C., 2002. Production of malt extract and beer from Nigerian sorghum varieties. Process Biochem., 37, 851-855.
Ogbonna A.C., 2011. Current developments in malting and brewing trials with sorghum in Nigeria: a review. J. Inst. Brew., 117(3), 394-400.
Ogbonna A.C., Obi S.K.C. & Okolo B.N, 2004 Optimization of proteolytic activities in malting sorghum. Process Biochem., 39, 711-716.
Ogul E.O., Odibo F.J.C., Agu R.C. & Palmer G.H., 2006. Quality assessment of different sorghum varieties for their brewing potential. J. Inst. Brew., 112(2), 117-121.
Onwurahl N.E., Nwodo O.F.C. & Echetabu C.O., 1996. Fwo isozymic forms of sorghum beta-glucanases. Plant Prod. Res. Commun., 1, 54-64.
Pérez-Carrillo E. & Serna-Saldívar S.O., 2007. Effect of protease treatment before hydrolysis with a-amylase on the rate of starch and protein hydrolysis of maize, whole sorghum, and decorticated sorghum. Cereal Chem., 84, 607-613.
Rom D.L., Shull J.M, Chandrashekar A. & Kirleis A.W., 1992. Effects of cooking and treatment with sodium bisulfite on in vitro protein digestibility and microstructure of sorghum flour. Cereal Chem., 69, 178-181.
Sakamoto K. & Konings W.N., 2003. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol., 89, 105-124.
Sang Y. et al., 2008. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem., 56, 6680-6685.
San-Lang W. et al., 2002. Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme Microb. Technol, 31, 321-328.
Sarlin F. et al., 2005. Fungal hydrophobins as predictors of the gushing activity of malt. J. Inst. Brew., 111(2), 105-111.
Serna-Saldívar S. & Rooney L.W., 1995. Structure and chemistry of sorghum and millets. In: DendyDA.V., ed. Sorghum and millets: chemistry and technology. St. Paul, MN, USA: American Association of Cereal Chemists, 69-124.
Shull J.M, Watterson J.J. & Kirleis A.W., 1992. Purifcation and immunocytochemical localization of kafrins in Sorghum bicolor (L. Moench) endosperm. Protoplasma, 171, 64-74.
Svensson B. et al., 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia (Bratislava), 57(Suppl. 11), 5-19.
Takashi K., Hironori H. & Yoshiki M., 2005. Fheconclusive proof that supports the concept of the a-amylase family: structural similarity and common catalytic mechanism. Biologia (Bratislava), 60(Suppl. 16), 13-16.
Taylor J.R.N., 1992. Mashing with malted grain sorghum. J. Am. Soc. Brew. Chem., 50, 13-18.
Taylor J.R.N. & Robbins D.J., 1993. Factors infuencing [3-amylase activity in sorghum malt. J. Inst. Brew., 99, 413-416.
Taylor J.R.N., Schober F.J. & Bean S.R., 2006. Novel food and non-food uses for sorghum and millets. J. Cereal Sci., 44, 252-271.
Tester R.F, Qi X. & Karkalas J., 2006. Hydrolysis of native starches with amylases. Anim. Feed Sci. Technol., 130, 39-54
USDA, 2004. Database for the proanthocyanidin content of selected foods. Washington, DC: United States Department of Agriculture (USDA).
Vanderhaegen B., Neven H., Verachtert H. & Derdelinckx G., 2006. Fhe chemistry of beer aging. Food Chem., 95(3), 357-381.
Waniska R.D., 2000. Technical and institutional options for sorghum grain mold management. In: Chandrashekar A., Bandyopadhyay R. & Hall A.J., eds. Proceeding of an international consultation, 18-19 May 2000, ICRISAT, Patancheru, India. Patancheru, India: ICRISAT, 72-106.
Watterson J.J., Shull J.M. & Kirleis A.W., 1993. Quantitation of a, (3 and y-kafrins in vitreous and opaque endosperm of Sorghum bicolor. Cereal Chem., 70, 452-457.
Woodward J.R. & Fincher G.B., 1982. Substrate specifcities and kinetic properties of two (1-3), (l-4)-D-Glucan endohydrolyase from germinating barley. Carbohydr. Res., 106, 111-122.
Wu YV. & Wall J.S., 1980. Lysine content of protein increased by germination of normal and high-lysine sorghums. J. Agric. Food Chem., 28(2), 455-458.