[en] Many white biotechnology bioprocesses apply techniques from chemical engineering based on bioreactors with mechanical stirring system commonly employed in pharmaceutical sector, food industry or energy field (Dasilva, 2004). As in chemical engineering, scale-up of these bioprocesses induces physicochemical constraints that affect physiological pathways and decrease performances. In this context, it is essential to think new bioprocesses better suited to physiology of microorganisms, minimizing physicochemical constraints. The aim of this work consists to use stainless steel structured packing (SSP) with high specific area (500-750 m²/m³) as inert support for biomass immobilization in order to produce high added value biomolecules. These bioreactors are biocatalysts in which microbial system is immobilized biomass on the form of a biofilm performing bioconversion of a substrate into a specific product (Rosche, 2009). In this study, an experimental setting containing a SSP reproduces solid-state fermentation (SSF) like conditions. Two well known microorganisms for their ability to form biofilm and secrete metabolites are tested in the experimental setting : Bacillus subtilis for its lipopeptides and Aspergillus oryzae for its glucoamylase. Effectiveness of the bioprocess in term of dynamic of the excretion of the target biomolecule is compared with a classical submerged culture (SmF). For lipopeptides production from B. subtilis, SSP is located in a 20L bioreactor continuously aspersed by liquid medium required to the growth of the biofilm. In the case of A. oryzae, the SSP is partially immerged in a 250 mL shake flask. X-ray tomography of the SSP allows non-invasive visualization and quantification of biofilm repartition inside the support.
Implementation of SSP permits almost total immobilization of biomass on the form of a mono-species biofilm to the detriment of the liquid phase. Processing of images obtained by X-ray tomography of the SSP provides relevant information for the optimization of the bioprocess. For both microorganism species, results indicate the influence of parameters such as hydrodynamics, aeration rate and microorganism specificity, on the biofilm morphology inside the support and the performances of the bioprocess. SSF-like conditions in the experimental setting lead to technologic progress, such as absence of foam formation, persistence of the microbial system, and improve the dynamic of metabolites excretion compared with conditions imposed by the submerged culture. Further experiment will consider hydrodynamics aspects and amount of carbon source on effectiveness of the bioprocess.
Disciplines :
Biotechnology
Author, co-author :
Zune, Quentin ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Toye, Dominique ; Université de Liège - ULiège > Département de chimie appliquée > Génie de la réaction et des réacteurs chimiques
Delvigne, Frank ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Other collaborator :
Brognaux, Alison ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Ongena, Marc ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Thonart, Philippe ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Language :
English
Title :
Biofilm formation on metal structured packing for the production of high added value biomolecules
Alternative titles :
[fr] Formation de biofilm sur garnissage métallique structuré pour la production de molécules à hautes valeurs ajoutées
Publication date :
2013
Event name :
SFGP 2013 - XIVème congrès de la Société Française de Génie des Procédés
Event place :
Lyon, France
Event date :
du 8 octobre 2013 au 10 octobre 2013
Journal title :
Récents Progrès en Génie des Procédés
ISSN :
1775-335X
Publisher :
Société Française de Génie des Procédés, Paris, France
Peer reviewed :
Peer reviewed
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture