[en] Metallo-β-lactamase (MβL) enzymes are usually produced by multiresistant Gram-negative bacterial strains and have spread worldwide. An approach based on phage display was employed to select single-domain antibody fragments (VHHs also called Nanobodies) that would inhibit the clinically relevant VIM-4 MβL. Out of more than 50 selected nanobodies, only the NbVIM_38 nanobody inhibited VIM-4. The paratope, inhibition mechanism and epitope of NbVIM_38 nanobody were then characterised.
An alanine scan of the NbVIM_38 paratope showed that its binding was driven by hydrophobic amino acids. The inhibitory concentration was in the µM range for all tested β-lactams. In addition, the inhibition was found to follow a mixed hyperbolic profile with a predominantly uncompetitive component. Moreover, substrate inhibition was recorded only after nanobody binding. These kinetic data are indicative of a binding site that is distant from the active site. This finding was confirmed by epitope mapping analysis that was performed using peptides, and which identified two stretches of amino acids in the L6 loop and at the end of the alpha2 helix. Because this binding site is distant from the active site and alters both the substrate binding and catalytic properties of VIM-4, this nanobody can be considered as an allosteric inhibitor.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sohier, Jean ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Laurent, Clémentine ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Ambler, R. P. (1980) The structure of β-lactamases. Philos. Trans. R. Soc. London Ser. B 289, 321-331
Galleni, M., Lamotte-Brasseur, J., Rossolini, G. M., Spencer, J., Dideberg, O. and Frere, J. M. (2001) Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 45, 660-663
Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frere, J. M. and Dideberg, O. (1995) The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 14, 4914-4921
Bebrone, C. (2007) Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem. Pharmacol. 74, 1686-1701
Garau, G., Garcia-Saez, I., Bebrone, C., Anne, C., Mercuri, P., Galleni, M., Frere, J. M. and Dideberg, O. (2004) Update of the standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 48, 2347-2349
Cornaglia, G., Giamarellou, H. and Rossolini, G. M. (2011) Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect. Dis. 11, 381-393
Walsh, T. R., Toleman, M. A., Poirel, L. and Nordmann, P. (2005) Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18, 306-325
Bush, K. and Fisher, J. F. (2011) Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from Gram-negative bacteria. Annu. Rev. Microbiol. 65, 455-478
Llarrull, L. I., Tioni, M. F. and Vila, A. J. (2008) Metal content and localization during turnover in B. cereus metallo-β-lactamase. J. Am. Chem. Soc. 130, 15842-15851
Gonzalez, J. M., Buschiazzo, A. and Vila, A. J. (2010) Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-β-lactamases. Biochemistry 49, 7930-7938
Bebrone, C., Lassaux, P., Vercheval, L., Sohier, J. S., Jehaes, A., Sauvage, E. and Galleni, M. (2010) Current challenges in antimicrobial chemotherapy: focus on β-lactamase inhibition. Drugs 70, 651-679
Drawz, S. M. and Bonomo, R. A. (2010) Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160-201
Perez-Llarena, F. J. and Bou, G. (2009) β-Lactamase inhibitors: the story so far. Curr. Med. Chem. 16, 3740-3765
Conrath, K. E., Lauwereys, M., Galleni, M., Matagne, A., Frere, J. M., Kinne, J., Wyns, L. and Muyldermans, S. (2001) β-Lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob. Agents Chemother. 45, 2807-2812
Muyldermans, S., Cambillau, C. and Wyns, L. (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem. Sci. 26, 230-235
De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., Muyldermans, S. and Wyns, L. (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. U.S.A. 103, 4586-4591
Conrath, K., Pereira, A. S., Martins, C. E., Timoteo, C. G., Tavares, P., Spinelli, S., Kinne, J., Flaudrops, C., Cambillau, C., Muyldermans, S. et al. (2009) Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase. Protein Sci. 18, 619-628
Desmyter, A., Spinelli, S., Payan, F., Lauwereys, M., Wyns, L., Muyldermans, S. and Cambillau, C. (2002) Three camelid VHH domains in complex with porcine pancreatic α-amylase. Inhibition and versatility of binding topology. J. Biol. Chem. 277, 23645-23650
Lauwereys, M., Arbabi Ghahroudi, M., Desmyter, A., Kinne, J., Holzer, W., De Genst, E., Wyns, L. and Muyldermans, S. (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17, 3512-3520
Transue, T. R., De Genst, E., Ghahroudi, M. A., Wyns, L. and Muyldermans, S. (1998) Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. Proteins 32, 515-522
Barlow, J. N., Conrath, K. and Steyaert, J. (2009) Substrate-dependent modulation of enzyme activity by allosteric effector antibodies. Biochim. Biophys. Acta 1794, 1259-1268
Oyen, D., Srinivasan, V., Steyaert, J. and Barlow, J. N. (2011) Constraining enzyme conformational change by an antibody leads to hyperbolic inhibition. J. Mol. Biol. 407, 138-148
Pournaras, S., Maniati, M., Petinaki, E., Tzouvelekis, L. S., Tsakris, A., Legakis, N. J. and Maniatis, A. N. (2003) Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-β-lactamase gene variants blaVIM-2 and blaVIM-4. J. Antimicrob. Chemother. 51, 1409-1414
Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expression Purif. 41, 207-234
Lassaux, P., Traore, D. A., Loisel, E., Favier, A., Docquier, J. D., Sohier, J. S., Laurent, C., Bebrone, C., Frere, J. M., Ferrer, J. L. and Galleni, M. (2011) Biochemical and structural characterization of the subclass B1 metallo-β-lactamase VIM-4. Antimicrob. Agents Chemother. 55, 1248-1255
Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R. and Muyldermans, S. (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521-526
Chames, P., Hoogenboom, H. R. and Henderikx, P. (2002) Selection of antibodies against biotinylated antigens. Methods Mol. Biol. 178, 147-157
Thys, B., Schotte, L., Muyldermans, S., Wernery, U., Hassanzadeh- Ghassabeh, G. and Rombaut, B. (2010) In vitro antiviral activity of single domain antibody fragments against poliovirus. Antiviral Res. 87, 257-264
Muyldermans, S., Baral, T. N., Retamozzo, V. C., De Baetselier, P., De Genst, E., Kinne, J., Leonhardt, H., Magez, S., Nguyen, V. K., Revets, H. et al. (2009) Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 128, 178-183
Harmsen, M. M., Ruuls, R. C., Nijman, I. J., Niewold, T. A., Frenken, L. G. and de Geus, B. (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol. Immunol. 37, 579-590
Yanchak, M. P., Taylor, R. A. and Crowder, M. W. (2000) Mutational analysis of metallo-β-lactamase CcrA from Bacteroides fragilis. Biochemistry 39, 11330-11339
Simm, A. M., Higgins, C. S., Pullan, S. T., Avison, M. B., Niumsup, P., Erdozain, O., Bennett, P. M. and Walsh, T. R. (2001) A novel metallo-β-lactamase, Mbl1b, produced by the environmental bacterium Caulobacter crescentus. FEBS Lett. 509, 350-354
Oelschlaeger, P., Mayo, S. L. and Pleiss, J. (2005) Impact of remote mutations on metallo-β-lactamase substrate specificity: implications for the evolution of antibiotic resistance. Protein Sci. 14, 765-774
Muyldermans, S. and Lauwereys, M. (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J. Mol. Recognit. 12, 131-140
Fenton, A. W. (2008) Allostery: an illustrated definition for the 'second secret of life'. Trends Biochem. Sci. 33, 420-425
Kern, D. and Zuiderweg, E. R. (2003) The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748-757
Garau, G., Bebrone, C., Anne, C., Galleni, M., Frere, J. M. and Dideberg, O. (2005) A metallo-β-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J. Mol. Biol. 345, 785-795
McManus-Munoz, S. and Crowder, M. W. (1999) Kinetic mechanism of metallo-β-lactamase L1 from Stenotrophomonas maltophilia. Biochemistry 38, 1547-1553
Spencer, J., Read, J., Sessions, R. B., Howell, S., Blackburn, G. M. and Gamblin, S. J. (2005) Antibiotic recognition by binuclear metallo-β- lactamases revealed by X-ray crystallography. J. Am. Chem. Soc. 127, 14439-14444
Tioni, M. F., Llarrull, L. I., Poeylaut-Palena, A. A., Marti, M. A., Saggu, M., Periyannan, G. R., Mata, E. G., Bennett, B., Murgida, D. H. and Vila, A. J. (2008) Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-β-lactamase. J. Am. Chem. Soc. 130, 15852-15863
Wang, Z., Fast, W. and Benkovic, S. J. (1999) On the mechanism of the metallo-β-lactamase from Bacteroides fragilis. Biochemistry 38, 10013-10023
Oelschlaeger, P. and Pleiss, J. (2007) Hydroxyl groups in the ββ sandwich of metallo-β-lactamases favor enzyme activity: Tyr218 and Ser262 pull down the lid. J. Mol. Biol. 366, 316-329
Tomatis, P. E., Rasia, R. M., Segovia, L. and Vila, A. J. (2005) Mimicking natural evolution in metallo-β-lactamases through second-shell ligand mutations. Proc. Natl. Acad. Sci. U.S.A. 102, 13761-13766
Tomatis, P. E., Fabiane, S. M., Simona, F., Carloni, P., Sutton, B. J. and Vila, A. J. (2008) Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility. Proc. Natl. Acad. Sci. U.S.A. 105, 20605-20610
Huntley, J. J., Fast, W., Benkovic, S. J., Wright, P. E. and Dyson, H. J. (2003) Role of a solvent-exposed tryptophan in the recognition and binding of antibiotic substrates for a metallo-β-lactamase. Protein Sci. 12, 1368-1375
Salsbury, Jr, F. R., Crowder, M. W., Kingsmore, S. F. and Huntley, J. J. (2009) Molecular dynamic simulations of the metallo-β-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. J. Mol. Model. 15, 133-145
Scrofani, S. D., Chung, J., Huntley, J. J., Benkovic, S. J., Wright, P. E. and Dyson, H. J. (1999) NMR characterization of the metallo-β-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 38, 14507-14514
Costello, A., Periyannan, G., Yang, K. W., Crowder, M. W. and Tierney, D. L. (2006) Site-selective binding of Zn(II) to metallo-β-lactamase L1 from Stenotrophomonas maltophilia. J. Biol. Inorg. Chem. 11, 351-358
Breece, R. M., Hu, Z., Bennett, B., Crowder, M. W. and Tierney, D. L. (2009) Motion of the zinc ions in catalysis by a dizinc metallo-β- lactamase. J. Am. Chem. Soc. 131, 11642-11643
Ullah, J. H., Walsh, T. R., Taylor, I. A., Emery, D. C., Verma, C. S., Gamblin, S. J. and Spencer, J. (1998) The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7Å resolution. J. Mol. Biol. 284, 125-136
Zhang, H. and Hao, Q. (2011) Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J. 25, 2574-2582
King, D. and Strynadka, N. (2011) Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 20, 1484-1491