[en] A review with 95 refs. The assembly of the bacterial cell wall peptidoglycan relies upon the availability of a ready-made precursor, the lipid II intermediate. This intermediate is taken up by a multifunctional factory that provides the required enzymic activities for polymer assembly at the exterior of the plasma membrane. Morphogenetic networks regulate the synthesis in a cell-cycle-dependent fashion. As essential components of the cell machinery are targets of β-lactam antibiotics, safety devices protect the cells against these toxic agents. Controversy and consensus formation lie at the heart of the scientific research. This review focuses on questions that bacterial cell wall biochemists still strive, with increasing success, to answer. [on SciFinder(R)] [en] As the protein sequence and structure databases expand, the relationships between proteins, the notion of protein superfamily, and the driving forces of evolution are better understood. Key steps of the synthesis of the bacterial cell wall peptidoglycan are revisited in light of these advances. The reactions through which the D-alanyl-D-alanine depeptide is formed, utilized, and hydrolyzed and the sites of action of the glycopeptide and β-lactam antibiotics illustrate the concept according to which new enzyme functions evolve as a result of tinkering of existing proteins. This occurs by the acquisition of local structural changes, the fusion into mul-timodular polypeptides, and the association into multiprotein complexes.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Petit JF, Munoz E, Ghuysen JM, Peptide crosslinks in bacterial cell wall peptidoglycans studied with specific endopeptidases from Streptomyces albus G, Biochemistry 1966;5:2764-2776.
Ghuysen JM. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 1968;32:425-464.
van Heijenoort J. Biosynthesis of the bacterial peptidoglycan unit. In: Ghuysen JM, Hakenbeck R (eds) Bacterial Cell Wall. New Comprehensive Biochemistry, Vol. 27, Elsevier, New York, 1994:39-54.
Pooley HM, Karamata D. Teichoic acid synthesis in Bacillus, subtills: genetic organization and biological roles. In: Ghuysen JM and Hakenbeck R (eds) Bacterial Cell Wall. New Comprehensive Biochemistry, Vol. 27, Eisevier, New York, 1994:187-198.
Lazarevic V, Karamata D. The tag GH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoical acids. Mol Microbiol 1995;16:345-355.
Frère JM, Duez C, Ghuysen JM, Vandekerkhove J. Occurrence of a serine residue in the penicillin-binding site of the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61. FEBS Lett 1976;70:257-260.
Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanylD-alanine. Proc Natl Acad Sci USA 1965;54:1133-1141.
Lamotte-Brasseur J, Dive G, Ghuysen JM. On the structural analogy between D-alanyl-D-alanine terminated peptides and βlactam antibiotics. Eur J Med Chem 1984;19:319-330.
Ghuysen JM, Frère JM, Leyh-Bouille M, Nguyen-Distèche M, Coyette J. Active-site serine D-alanyl-D-alanine-cleaving peptidases-catalysed acyl transfer reactions. Procedures for studying the penicillin-binding proteins of bacterial plasma membranes. Biochcm J 1986;235:159-165.
Granier B, Jamin M, Adam M et al. Serine-type D-Ala-D-Ala peptidases and penicillin-binding proteins. Methods Enzymol 1994;244:249-266.
Palomeque-Messia P, Englebert S, Leyh-Bouille M et al. Amino acid sequence of the penicillin-binding protein/DD-peptidase of Streptomyces K15. Predicted secondary structures of the low-Mr penicillin-binding proteins of class A. Biochem J 1991;279:223-230.
Nguyen-Distèche M, Leyh-Bouille M, Pirlot S, Frère JM, Ghuysen JM. Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors. Biochem J 1986;235:167-176.
Leyh-Bouille M, Nguyen-Distèche M, Pirlot S, Veithen A, Bourguignon C, Ghuysen JM. Streptomyces K15 DD-peptidase-catalysed reaction with suicide β-lactam carbonyl donors. Biochem J 1986;235:177-182.
Grandchamps J, Nguyen-Distèche M, Damblon C, Frère JM, Ghuysen JM. The Streptomuces K15 active-site serine DD-transpeptidase. Specificity profile for peptide, thiolester and ester carbonyl donors and pathways of the transfer reactions. Biochem J 1995;307:335-339.
Frère JM, Ghuysen JM, Vanderhaeghe H, Adriaens P, Degelaen J. Fate of thiazolidine ring during fragmentation of penicillin by exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Nature 1976;260:451-454.
Frère JM, Ghuysen JM, De Graeve J. Fragmentation of penicillin catalysed by the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Isotopic study of hydrogen fixation on carbon 6. FEBS Lett 1978;88:147-150.
Ghuysen JM. Molecular structures of penicillin-binding proteins and βlactamases. Trends Microbiol 1994;2:372-380.
Kelly JA, Moews PC, Knox JR, Frère JM, Ghuysen JM. Penicillin target enzyme and the antibiotic binding site. Science 1982;218:479-481.
Kelly JA, Knox JR, Zhao H, Frère JM, Ghuysen JM. Crystallographic mapping of βlactams bound to a DD-peptidase. J Mol Biol 1989;209:281-295.
Kelly JA, Kuzin AP. Refined crystallographic structure of a DD-peptidase penicillin target enzyme at 1.6 Å resolution. J Mol Biol 1995;254:223-236.
Lamotte-Brasseur J, Dive G, Dideberg O, Charlier P, Frère JM, Ghuysen JM. Mechanism of acyl transfer by the class A serine β-lactamase of Streptomyces albus G. Biochem J 1991;279:213-221.
Herzberg O. Refined crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.0 Å resolution. J Mol Biol 1991;217:701-719.
Knox JR, Moews PC.β-Lactamase of Bacillus licheniformis 749/C. Refinement at 2 Å resolution and analysis of hydration. J Mol Biol 1991;220:435-455.
Strynadka NCJ, Adachi H, Jensen SE, et al. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature (London) 1992;359:700-705.
Jelsch C, Mourey L, Masson JM, Samama JP. Crystal structure of E. coli TEM1 β-lactamase at 1.8 Å resolution. Proteins Struct Funct Genet 1993;16:364-383.
Oefner C, D'Arcy A, Daly JJ et al. Refined crystal structure of β-lactamase of Citrobacter freundii indicates a mechanism for β-lactam hydrolysis. Nature (London) 1990;343:284-288.
Lobkovsky E, Moews PC, Liu H, Zhao H, Frère JM, Knox JR. Evolution of an enzyme activity: crystallographic structure at 2 Å resolution of the cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci USA 1993;90:11257-11261.
Orengo CA, Jones DT, Thornton JM. Protein superfamilies and domain superfolds. Nature (London) 1994;372:631-634.
Ghuysen JM. Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 1991;45:37-67.
Joris B, Hardt K, Ghuysen JM. Induction of β-lactamase and low-affinity penicillin-binding protein 2' synthesis in Gram-positive bacteria. In: Ghuysen JM and Hakenbcck R (eds) Bacterial Cell Wall. New Comprehensive Biochemistry. Vol. 27, Elsevier, New York, 1994:505-516.
Hardt K, Joris B, Brasseur R, Lampen JO, Frère JM, Fink AL, Ghuysen JM. The penicillin sensory transducer BlaR involved in the inducibility of β-lactamase synthesis in Bacillus licheniformis is embedded in the plasma membrane via a four α-helix bundle. Submitted.
Englebert S, Piras G, El Kharroubi A et al. Modular design of the bi(multi?) functional penicillin-binding proteins. In: de Pedro MA, Höltje JV and Löffelhardt W (eds) Bacterial Growth and Lysis: Metabolism and Structure of the Bacterial Sacculus. FEMS Symp Proc 65. Plenum, New York, 1993:319-333.
Broome-Smith JK, Edelman A, Yousif S, Spratt BG. The nuclcotide sequence of the pon A and pon B genes encoding penicillin-binding proteins 1A and 1B of Escherichia coli K12. Eur J Biochcm 1985;147:437-446.
Tomb JF, El-Hajj H, Smith HO, Nuclcotidc sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd, Gene 1991;104:1-10.
Basu J, Mahapatra S, Kundu M et al. Identification and overexpression in Escherichia coli of a Mycobacterium leprae gene. pon 1. encoding high-molecular-muss class A penicillin-binding protein PBP1. J Bacteriol 1996;178:1707-1711.
Martin C, Briese T, Hakenbcck R, Nuclcotidc sequence of genes encoding penicillin-binding proteins from Streptococcus pneumoniae and Streptococcus oralis with high homology to Escherichia coli penicillin-binding proteins 1A and 1B. J Bacteriol 1992;174:4517-4523.
Hackbarth CJ, Kocagoz T, Kocagoz S, Chambers H. Point mutations in Staphylococcus aueus PBP2 gene affect penicillin-binding kinetic and are associated with resistance. Antimicrob Agents Chemother 1995;39:103-106.
Popham DL, Setlow P, Cloning, nucleotidc sequence, and mutagenesis of the Bacillus subtilis panA operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor. J Bacteriol 1995;177:326-335.
Popham DL, Setlow P, Cloning, nucleotide sequence, and regulation of the Bacillus subtilis pbpf gene, which codes for a putative class A high-molecular-weight penicillin-binding protein. J Bacteriol 1993;175:4870-4876.
Popham DL, Setlow P, Cloning, nucleotide sequence, mutagenesis and mapping of the Bacillus subtlis pbpD gene, which codes for penicillin-binding protein 4, J Bacteriol 1994;176:7197-7205.
Spratt BG, Zhou J, Taylor M, Merrick MJ. Monofunctional biosynthetic peptidoglycan transglycosylases. Mol Biol 1996;19:639-640.
Asoh S, Matsuzawa H, Ishino F, Strominger JL, Matsuhashi M, Ohta T, Nucleotide sequence of the pbpA gene and characteristics of the deduced amino acid sequence of penicillin-binding protein 2 of Escherichia coli K12, Eur J Biochem 1986;160:231-238.
Nakamura M, Maruyama IN, Soma M, Kato JI, Suzuki H, Hirota Y. On the process of cellular division in Escherichia coli: nucleotide sequence of the gene for penicillin-binding protein 3. Mol Gen Genet 1983;191:1-9.
Zhang QY, Spratt BG. Nucleotide sequence of the penicillinbinding protein 2 gene of Neisseria meningitidis. Nucleic Acids Res 1989;17:5383.
Liao X, Hancock REW. Cloning and characterization of the Pseudomonas aeruginosa pbpB gene encoding penicillin-binding protein 3, Antimicrob Agents Chemother 1995;39:1871-1874.
Piras G, El Kharroubi A, Van Beeumen J, Coeme E, Coyette J, Ghuysen JM, Characterization of an Enterococcus hirae penicillin-binding protein 3 with low penicillin affinity, J Bacteriol 1990;172:6856-6862.
EI Kharroubi A, Jacques P, Piras G, Coyette J, Van Beeumen J, Ghuysen JM. The Enterocaccus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem J 1991;280:463-469.
Song MD, Wachi M, Doi M, Ishino F, Matsuhashi M. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 1987;221:167-171.
Yanouri A, Daniel RA, Errington J, Buchanan CE. Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J Bacteriol 1993;175:7604-7611.
Laible G, Hakenbeck R, Sicard MA, Joris B, Ghuysen JM. Nucleotide sequence of the pbpX genes encoding the penicillin-binding proteins 2X from Streptococcus pneumoniae R6 and a cefotaxime-resistant mutant. C506. Mol Microbiol 1989;3:1337-1348.
Dowson CG, Hutchinson A, Spratt BG. Nucleotide sequence of the penicillin-binding protein 2B gene of Streptococcus pneumoniae strain R6. Nucleic Acids Res 1989;17:7518.
Goffin C, Fraipont C, Ayala J, Terrak M, Nguyen-Distèche M, Ghuysen JM. The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure. J Bacteriol 1996;178:5402-5409.
Mollerach M, Partoune P, Coyette J, Ghuysen JM. Importance of the E46-D160 polypeptide segment of the non-penicillin-binding module for the stability of the low-affinity, multimodular class B penicillin-binding protein 5 of Enterococcus hirae. J Bacteriol 1996;178:1774-1775.
Wu F.CY, Alborn WE, Flokowitsch JE et al. Site-directed mutagenesis of the mec A gene from methicillin-resistant strains of Staphylocaccus aureus. J Bacteriol 1994;176:443-449.
Vunhove M, Raquet X, Frère JM. Investigation of the folding pathway of the TEM1 β-lactamase. Proteins Struct Funct Genet 1995;22:110-118.
Eder J, Fersht AR. Pro-sequencc-assisted protein folding. Mol Microbiol 1995;16:609-615.
Shinde U. Inouye M. Intramolecular chaperones and protein folding. TIBS 1993;18:442-446.
Pares S, Mouz N, Pétillot Y, Hakenbeck R, Dideberg O. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nature Struct Biol 1996;3:284-289.
Kato J, Suzuki H, Hirota Y. Overlapping of the coding region for α and γ components of penicillin-binding protein 1b in Escherichia coli. Mol Gen Genet 1984;196:449-457.
Hara H, Suzuki H. A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli. FEBS Lett 1984;168:155-160.
Matsuhashi M. Utilization of lipid-linked precursors and the formation of peptidoglyean in the process of cell growth and division: membrane enzymes involved in the final steps of peptidoglycan synthesis and the mechanism of their regulation. In: Ghuysen JM and Hakenbeck R (eds) Bacterial Cell Wall. New Comprehensive Biochemistry. Vol. 27, Elsevier, New York, 1994:55-72.
Wang CC, Schultz DE, Nicholas RA. Localization of a putative second membrane association site in penicillin-binding protein 1B of Escherichia coli. Biochem J 1996;316:149-156.
Zijderveld CA, Aarsman MEG, Nanninga N. Differences between inner membrane and peptidoglycan-associated PBP1B dimers of Escherichia coli. J Bacteriol 1995;177:1860-1863.
Vicente M, Errington J. Structure, function and controls in microbial division. Mol Microbiol 1996;20:1-7.
Erickson HP, FtsZ, a prokaryotic homolog of tubulin? Cell 1995;80:367-370.
Mucherjee A, Lutkenhaus J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 1994;176:2754-2758.
Addinall SG, Lutkenhaus J. FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol 1996;22:231-237.
Sanchez M, Valencia A, Ferrandiz MJ, Sander C, Vicente M. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J 1994;13:4919-4925.
Niki H, Imamura R, Hitavka M, Yamanaka K, Ogura T, Hiraga S, E, coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP GTP binding activities. EMBO J 1992;11:5101-5109.
Sakowicz R, Goldstein LSB. The muscle in kinesin. Nature Struct Biol 1996;3:404-407.
Reddy PS, Raghavan A, Chatterjee D. Evidence for a ppGpp-binding site in Escherichia coli RNA polymerase: proximity relationship with the rifampicin-binding domain. Mol Microbiol 1995;15:255-265.
Joselean-Petit D, Thévenet D, D'Ari R. ppGpp concentration, growth without PBP2 activity, and growth-rate control in Escherchia coli. Mol Microbiol 1994;13:911-917.
Begg KJ, Takasuga A, Edwards DH et al. The balance between different peptidoglycan precursors determines whether E. coli cells will elongate or divide. J Bacteriol 1990;172:6697-6703.
Markiewicz Z, Broome-Smith JK, Schwarz U, Spratt BG. Spherical Escherichia coli due to elevate levels of D-alanine carboxypeptide. Nature 1982;297:702-704.
Van der Linden MPG, Hoan L, Hoyer MA, Keck W. Possible role of Escherichia coli penicillin-binding protein 6 in stabilization of stationary-phase peptidoglycan. J Bacteriol 1992;174:7572-7578.
Begg KJ, Dewar SJ, Donachie WO. A new Esherichia coli cell division gene ftsK. J Bacteriol 1995;177:6211-6222.
Shockman GD, Höltje JV. Microbial peptidoglycan (murein) hydrolases. In: Ghuysen JM and Hakenbeck R (eds) Bacterial Cell Wall. New Comprehensive Biochemistry, Vol. 27, Elsevier, New York, 1994:131-166.
Höltje JV. From growth to autolysis: the murein hydrolases in Escherichia coli. Arch Microbiol 1995;164:243-254.
Thunnissen AMWH, Rozeboom HJ, Halk KH, Dijkstra BW. Structure of the 70-kDa soluble lytic transglycosylase complexed with Bulgecin A. Implications for the enzymatic mechanism. Biochemistry 1995;34:12729-12737.
Severin A, Vaz Pato MV, Sa Figueiredo AM, Tomasz A. Drastic changes in the peptidoglycan composition of penicillin-resistant laboratory mutants of Streptococcus pneumaniae. FEMS Microbiol Lett 1995;130:31-35.
Tomasz A. Benefit and risk in the β-lactam antibiotic-resistance strategies of Streptococcus pneumoniae and Staphylococcus aureus. Trends Microbiol 1996;2:380-385.
Ishino F, Matsuhashi M. Peptidoglycan synthetic activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum forming reaction sequence. Biochem Biophys Res Commun 1981;101:2641-2642.
van Heijenoort Y, Gomez M, Derrien M, Ayala J, van Heijenoort J. Membrane intermediate in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP1B and PBP3. J Bacteriol 1992;174:3549-3557.
Hara H, Abe N, Nakakouji M, Nishimura Y, Horiuchi K. Overproduction of penicillin-binding protein 7 suppresses thermosensitive growth defect at low osmolarity due to an spr mutation of Escherichia coli. Microbial Drug Resistance 1996;2:63-72.
Popham DL, Setlow P. Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins. J Baeteriol 1996;178:2079-2085.
Hakenbeck R. Target-mediated resistance to β-lactam antibiotics, Biochem Pharmacol 1995;50:1121-1127.
Knox JR. Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity and three-dimensional structure. Antimicrob Agents Chemother 1995;39:2593-2601.
Frère JM. β-Lactamases and bacterial resistance to antibiotics. Mol Microbiol 1995;16:385-395.
Dowson CG, Coffey TJ, Spratt BG. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol 1994;2:361-366.
Spratt BG. Resistance to β-actam antibiotics. In: Ghuysen JM and Hakenbeck R (eds) Bacterial Cell Wall. New Comprehensive Biochemistry, Vol. 27, Elsevier, New York, 1994:517-534.
Damblon C, Raquet X, Lian LY et al. The catalytic mechanism of β-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme. Proc Natl Acad Sci USA 1996;93:1747-1752.
Dive G, Dehareng D, Ghuysen JM. Detailed study of a molecule into a molecule: N-acetyl-L-tryptophanamide in an active-site model of α-chymotrypsin. J Am Chem Soc 1994;116:2548-2556.
Dive G, Dehareng D, Peelers D. Proposition for the acylation mechanism of serine proteases: a one-step process? Int J Quantum Chem 1996;58:85-107.
Culot P, Dive G, Nguyen VH, Ghuysen JM. A quasi-Newton algorithm for first-order saddle-point location. Theor Chim Acta 1992;82:189-205.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.