Reference : Sustainable energy conversion through the use of Organic Rankine Cycles for waste hea...
Dissertations and theses : Doctoral thesis
Engineering, computing & technology : Energy
Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solar applications
Quoilin, Sylvain mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques >]
University of Liège, ​Liège, ​​Belgium
Doctor of Applied Sciences
Lemort, Vincent mailto
Duysinx, Pierre mailto
Heyen, Georges
Ngendakumana, Philippe mailto
Lebrun, Jean mailto
Colonna, Piero
Zoughaib, Assaad
[en] ORC ; Organic Rankine Cycle ; Scroll expander ; sustainable ; concentrating solar power ; waste heat recovery ; CSP ; Modeling ; Modelling ; experimental investigation
[en] This thesis contributes to the knowledge and the characterization of small-scale Organic Rankine Cycles (ORC). It is based on experimental data, thermodynamic models and case studies.
The experimental studies include:
1. A prototype of small-scale waste heat recovery ORC using an open-drive oil-free scroll expander, declined in two successive versions with major improvements.
2. A prototype of hermetic scroll expander tested on vapor test rig designed for that purpose.
The achieved performance are promising, with expander overall isentropic effectivenesses higher than 70% and cycle efficiencies comparable or higher than the typical efficiencies reported in the scientific literature for the considered temperature range.
New steady-state semi-empirical models of each component are developed and validated with the experimental data. The global model of the ORC prototype allows predicting its performance with a good accuracy and can be exploited to simulate possible improvements or alternative cycle configurations.
Dynamic models of the cycle are also developed for the purpose of evaluating the system's reaction to transient conditions. These models are used to define and compare different control strategies.
The issues of cycle optimization and fluid selection are treated using the steady-state semi-empirical models. The thermodynamic optimization of such cycles is first demonstrated by practical examples. Furthermore, three different methods for fluid selection are proposed, investigated and compared. Their respective advantages and fields of application are described.
Finally, two prospective studies of small-scale ORC systems are proposed. The first one is a solar ORC designed for the rural electrification of remote regions in Africa. This prototype aims at competing with the photovoltaic technology, with the advantage of generating hot water as by-product.
The second prospective study deals with the recovery of highly transient heat sources. Advanced regulation strategies are proposed to address the practical issues inherent to such systems. These strategies are compared with the state-of-the-art strategies and show a non-negligible potential of performance improvement.
Energy Systems
Researchers ; Professionals ; Students ; General public

File(s) associated to this reference

Fulltext file(s):

Open access
PhD_Thesis_Dissertation.pdfPublisher postprint5.01 MBView/Open

Additional material(s):

File Commentary Size Access
Open access
presentation3.ppsxThesis presentation13.03 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.