Article (Scientific journals)
"Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients.
Phillips, Christophe; Bruno, Marie-Aurélie; Maquet, Pierre et al.
2011In NeuroImage, 56 (2), p. 797–808
Peer Reviewed verified by ORBi
 

Files


Full Text
phillips_NeuroImage2010.pdf
Author postprint (501.3 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
FDG-PET; Vegetative state; Locked-in syndrome; Consciousness; Classifier; Relevance vector machine
Abstract :
[en] The vegetative state is a devastating condition where patients awaken from their coma (i.e., open their eyes) but fail to show any behavioural sign of conscious awareness. Locked-in syndrome patients also awaken from their coma and are unable to show any motor response to command (except for small eye movements or blinks) but recover full conscious awareness of self and environment. Bedside evaluation of residual cognitive function in coma survivors often is difficult because motor responses may be very limited or inconsistent. We here aimed to disentangle vegetative from "locked-in" patients by an automatic procedure based on machine learning using fluorodeoxyglucose PET data obtained in 37 healthy controls and in 13 patients in a vegetative state. Next, the trained machine was tested on brain scans obtained in 8 patients with locked-in syndrome. We used a sparse probabilistic Bayesian learning framework called "relevance vector machine" (RVM) to classify the scans. The trained RVM classifier, applied on an input scan, returns a probability value (p-value) of being in one class or the other, here being "conscious" or not. Training on the control and vegetative state groups was assessed with a leave-one-out cross-validation procedure, leading to 100% classification accuracy. When applied on the locked-in patients, all scans were classified as "conscious" with a mean p-value of .95 (min .85). In conclusion, even with this relatively limited data set, we could train a classifier distinguishing between normal consciousness (i.e., wakeful conscious awareness) and the vegetative state (i.e., wakeful unawareness). Cross-validation also indicated that the clinical classification and the one predicted by the automatic RVM classifier were in accordance. Moreover, when applied on a third group of "locked-in" consciously aware patients, they all had a strong probability of being similar to the normal controls, as expected. Therefore, RVM classification of cerebral metabolic images obtained in coma survivors could become a useful tool for the automated PET-based diagnosis of altered states of consciousness.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Neurology
Author, co-author :
Phillips, Christophe  ;  Université de Liège - ULiège > Centre de recherches du cyclotron
Bruno, Marie-Aurélie ;  Université de Liège - ULiège > Centre de recherches du cyclotron - Coma Science Group
Maquet, Pierre  ;  Université de Liège - ULiège > Centre de recherches du cyclotron - Département des sciences cliniques
Boly, Mélanie ;  Université de Liège - ULiège > Centre de Recherches du Cyclotron - Coma Science Group > Neurologie
Noirhomme, Quentin ;  Université de Liège - ULiège > Centre de recherches du cyclotron
Schnakers, Caroline ;  Université de Liège - ULiège > Centre de recherches du cyclotron
Vanhaudenhuyse, Audrey  ;  Université de Liège - ULiège > Coma Science Group > Centre de recherches du cyclotron
Bonjean, M.
Hustinx, Roland  ;  Centre Hospitalier Universitaire de Liège - CHU > Médecine nucléaire
Moonen, Gustave  ;  Centre Hospitalier Universitaire de Liège - CHU > Neurologie Sart Tilman
Luxen, André ;  Université de Liège - ULiège > Centre de recherches du cyclotron > Chimie organique de synthèse
Laureys, Steven  ;  Université de Liège - ULiège > Centre de recherches du cyclotron - Département des sciences cliniques
Language :
English
Title :
"Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients.
Publication date :
2011
Journal title :
NeuroImage
ISSN :
1053-8119
eISSN :
1095-9572
Publisher :
Elsevier Science, Orlando, United States - Florida
Volume :
56
Issue :
2
Pages :
797–808
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
FMRE - Fondation Médicale Reine Elisabeth
EU - European Union
JSMF - James S McDonnell Foundation
MSF - Mind Science Foundation
Fondation Léon Fredericq
Commentary :
Copyright (c) 2010 Elsevier Inc. All rights reserved.
Available on ORBi :
since 12 February 2011

Statistics


Number of views
129 (20 by ULiège)
Number of downloads
10 (7 by ULiège)

Scopus citations®
 
73
Scopus citations®
without self-citations
34
OpenCitations
 
61
OpenAlex citations
 
92

Bibliography


Similar publications



Contact ORBi