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The vegetative state is a devastating condition where patients awaken from their coma (i.e., open their eyes)
but fail to show any behavioural sign of conscious awareness. Locked-in syndrome patients also awaken from
their coma and are unable to show any motor response to command (except for small eye movements or
blinks) but recover full conscious awareness of self and environment. Bedside evaluation of residual cognitive
function in coma survivors often is difficult because motor responses may be very limited or inconsistent. We
here aimed to disentangle vegetative from “locked-in” patients by an automatic procedure based on machine
learning using fluorodeoxyglucose PET data obtained in 37 healthy controls and in 13 patients in a vegetative
state. Next, the trained machine was tested on brain scans obtained in 8 patients with locked-in syndrome. We
used a sparse probabilistic Bayesian learning framework called “relevance vector machine” (RVM) to classify
the scans. The trained RVM classifier, applied on an input scan, returns a probability value (p-value) of being in
one class or the other, here being “conscious” or not. Training on the control and vegetative state groups was
assessed with a leave-one-out cross-validation procedure, leading to 100% classification accuracy. When
applied on the locked-in patients, all scans were classified as “conscious” with a mean p-value of .95 (min .85).
In conclusion, even with this relatively limited data set, we could train a classifier distinguishing between
normal consciousness (i.e., wakeful conscious awareness) and the vegetative state (i.e., wakeful unawareness).
Cross-validation also indicated that the clinical classification and the one predicted by the automatic RVM
classifier were in accordance. Moreover, when applied on a third group of “locked-in" consciously aware
patients, they all had a strong probability of being similar to the normal controls, as expected. Therefore, RVM
classification of cerebral metabolic images obtained in coma survivors could become a useful tool for the
automated PET-based diagnosis of altered states of consciousness.
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Introduction (Laureys, 2005; Laureys et al., 2005). Patients with LIS sometimes may

remain comatose for days or weeks, needing artificial respiration and

Following traumatic or non-traumatic brain damages, some
patients will fall into an irreversible coma, and possibly brain death.
Still some others will “awaken” (i.e., recover sleep-wake cycles) from
their coma but will remain fully unaware (i.e., will only show reflex
movements without command following) in a “vegetative state” (VS).
“Locked-in syndrome” (LIS) patients also awaken from their coma but
recover full consciousness while being selectively de-efferented (i.e.,
they have no means of producing speech, limb or face movements in
response to commands except for small eye movements or blinks)
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then gradually wake up, remaining paralyzed and voiceless, superfi-
cially resembling patients in VS. Distressingly, studies reported that
the diagnosis of LIS on average takes over 2.5 months and in some
cases took 4 to 6 years before aware and sensitive patients, locked in
an immobile body, were recognized as being conscious (Le6n-Carrién
et al., 2002). Recognizing unambiguous signs of conscious perception
of the environment and of the self in coma survivors can be very
challenging. This difficulty is reflected in the frequent misdiagnoses
(approximately 40%) of the vegetative state (Laureys et al., 2004;
Schnakers et al., 2009b). An accurate and reliable evaluation of the
level and content of consciousness in severely brain-damaged
patients is thus of paramount importance for their appropriate
management.
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Table 1
Demographic, clinical, electroencephalographic (EEG), structural neuroimaging of patients in a vegetative state (VS) and locked-in syndrome (LIS).
Patient ~Gender /age Etiology Interval Arousal® Auditory function® Visual Motor function® Oro-motor Communication® EEG MRI/CT
number (year) (m) function® function®
VS_01 M/53 Anoxia 10 Eyes opening Auditory startle Visual Spastic quadriplegia, Oral reflexive None Generalized suppression  No focal lesions®
without stimulation startle abnormal posturing ~ movement
VS_02 F/65 Anoxia 9 Eyes opening with ~ Auditory startle Visual Spastic quadriplegia, Oral reflexive None Low voltage delta activity — Corticosubcortical atrophy and
stimulation startle flexion withdrawal movement more prominent on the secondary hydrocephalus without
right focal lesion
VS_03 M/48 Anoxia 30 Eyes opening with ~ Auditory startle Visual Spastic quadriplegia, Oral reflexive None Low-voltage delta, Diffuse corticosubcortical atrophy
stimulation startle flexion withdrawal movement discontinuous generalized and secondary hydrocephalus
paroxistic activity without focal lesion
VS_04 M/69 Anoxia 1 Eyes opening with ~ None None Spastic quadriplegia, Oral reflexive None Generalized theta-delta Lesions in bilateral paraventricular,
stimulation abnormal posturing ~ movement activity insular, prefrontal and left parietal
areas
VS_05 M/53 CVA 2 Eyes opening Auditory startle Visual Spastic quadriplegia, None None Generalized theta-delta Quadri-ventricular hemorrhage,
without stimulation startle flexion withdrawal activity multifocal cortical and brainstem
lesions
VS_06 F/42 Anoxia 3 Eyes opening Auditory startle None Spastic quadriplegia, Vocalization/ None NA NA
without stimulation abnormal posturing  oral movement
VS_07 F/36 Anoxia 30 Eyes opening Auditory startle Visual Spastic quadriplegia, None None Generalized theta activity, Corticosubcortical atrophy, bilateral
without stimulation startle flexion withdrawal sporadic delta dysrythmia subcortical and prefrontal lesions
VS_08 F/69 Trauma 1 Eyes opening with ~ Auditory startle None Spastic quadriplegia, Oral reflexive None Generalized theta-delta Multifocal meningeal hemorrhages,
stimulation no response to movement activity, left frontal bilateral temporal contusions, left
noxious stimulation paroxistic activity frontal subdural hematoma
VS_09 F/79 Sub-arachnoid 1 None None None Spastic quadriplegia, Oral reflexive None Generalized theta activity, Multifocal meningeal and
hemorrhage flexion withdrawal movement left central paroxistic intraventricular hemorrhages®
activity
VS_10 M/62 Anoxia 9 Eyes opening Auditory startle None Spastic quadriplegia, Oral reflexive None Theta-delta activity Corticosubcortical atrophy,
without stimulation flexion withdrawal movement (parietal and occipital) periventricular, basal ganglia,
cerebellar and brainstem lesions
VS_11 F/70 Encephalitis 1 Eyes opening with ~ Localization Visual Spastic quadriplegia, Oral reflexive None Generalized non-reactive  Bilateral prefrontal, temporal and
stimulation to sound startle flexion withdrawal movement delta activity periventrical lesions
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VS_12

VS_13

LIS_01

LIS_02

LIS_03

LIS_04

LIS_05

LIS_06

LIS_07

LIS_08

F/35
M/55

M/44

F/21

M/44

F/37

M/53

M/35

F/46

F/42

Anoxia
Anoxia
Anoxia
Basilar artery
thrombosis

Basilar artery
thrombosis

Basilar artery
thrombosis

Basilar artery
thrombosis

Trauma
Basilar artery
thrombosis

Brainstem
hemorrhage

17

285

0.5

51

285

Eyes opening
without stimulation
Eyes opening with
stimulation

Eyes opening with
stimulation

None

Attention

Eyes opening

without stimulation

None

Attention

Attention

Eyes opening with
stimulation

Auditory startle
Auditory startle

Reproducible
movement to
command
None

Consistent
movement

to command
Reproducible
movement

to command
Reproducible
movement

to command
Auditory startle

Consistent
movement
to command
Reproducible
movement
to command

Visual
startle
None

Visual
pursuit

None
Object
recognition

Object
recognition

Visual
pursuit

Visual
startle

Object
recognition

Visual
pursuit

Spastic quadriplegia,
flexion withdrawal
Spastic quadriplegia,
abnormal posturing
Spastic quadriplegia,
flexion withdrawal

Spastic quadriplegia,
flexion withdrawal

Spastic quadriplegia,
functional object use

Spastic quadriplegia,
flexion withdrawal

Spastic quadriplegia,
abnormal posturing

Spastic quadriplegia,
flexion withdrawal

Spastic quadriplegia,
flexion withdrawal

Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement
Oral reflexive
movement
Vocalization/
oral movement

Oral reflexive
movement

None
Oral reflexive
movement

Vocalization/
oral movement

Vocalization/
oral movement

Oral reflexive
movement

None

None

None

None

None

Non-
functional :
intentional
Non-
functional :
intentional
Non-
functional :
intentional
None

Functional:
accurate

Non-
functional :
intentional

Disorganized low-voltage
theta-delta basic rhythm
Generalized delta activity

Alternating alpha-theta
and sporadic delta
activity

Unstructured theta
basic rhythm

Reactive alpha basic
rhythm

Reactive 6 Hz basic
rhythm

6 Hz basic rhythm

Alpha activity with
posterior theta
dysrythmia

Reactive alpha activity,
intermittent delta-theta

Diffuse theta activity

Focal lesions in basal ganglia
NA

Bilateral frontal corticosubcortical,
brainstem and cerebellar atrophy

Multifocal ischemic lesions in
brainstem, bilateral cerebellum
and thalamus

Brainstem, bilateral cerebellum,
thalamus, right occipital and
mesiotemporal lesions
Multifocal ischemic lesions in
brainstem, right temporal and
prefrontal areas”

Ischemic lesion in brainstem,
midbrain and left cerebellum

Diffuse corticosubcortical atrophy
and secondary hydrocephalus”

Ischemic lesion in brainstem
extending to midbrain

Hemorrhagic lesion in brainstem

Demographic data: patient number, gender and age (at scanning time), etiology, interval (in month) between the acute brain insult and scanning, Coma Recovery Scale—Revised subscores observations (arousal, auditory function, visual
function, motor function, oro-motor function, communication), EEG characteristics and structural MRI/CT diagnostics. NA = not available.
@ Based on Coma Recovery Scale—Revised assessment (CRS-R).

b X-ray CT data.
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For the time being, consciousness cannot be measured objectively by
any equipment and its bedside estimation requires the interpretation of
multiple clinical signs. Behavioural assessment remains the “gold
standard” for detecting signs of consciousness and, hence, for determin-
ing diagnosis. Clinically, we are limited to the appraisal of the patient's
capacity to perceive the external world and to voluntarily interact with it
(i.e., perceptual awareness). Bedside evaluation of residual brain
function in severely brain-damaged patients is complicated by the
presence of motor impairment, tracheotomy, fluctuating arousal level or
ambiguous and rapidly habituating responses (Majerus et al., 2005).

We here aim to disentangle VS from LIS patients by teaching a
“machine” to discriminate consciousness, using fluorodeoxyglucose
PET (FDG-PET) scans obtained in healthy controls and patients in VS.
The capacity of the machine at discriminating new (or unseen) images
was directly assessed via a cross-validation procedure on data from
the healthy controls and VS patients. Next, the trained machine was
further tested on brain scans obtained in patients with LIS.

Materials and methods
PET data

The data consisted of FDG-PET scans from 37 healthy control
subjects, further referred to as the “CO” group, and 45 patients. The 45
patients are characterized by different pathologies and split into three
subgroups: 13 in a vegetative state (“VS”), 8 with locked-in syndrome
(“LIS™), plus 24 patients with ambiguous consciousness signs.

FDG-PET reflects the uptake of glucose by the brain, i.e., its energy
consumption. Areas of hypometabolism and relatively preserved
metabolism can be associated to a decrease (preservation) of local
brain activity (Laureys et al., 2008). Cerebral metabolism data were
acquired after intravenous injection of five to ten mCi (185-370 MBq)
FDG (as described in Laureys et al., 2000) on a Gemini PET scan
(Philips Medical Systems) at Liége university hospital.

Subjects

The 37 control subjects were healthy volunteers (17 men; mean
age 45417 years; range 18-80 years). All patients had standardized
behavioural assessment using the Coma Recovery Scale—Revised
(CRS-R) (Giacino et al., 2004; Kalmar and Giacino, 2005) performed
the day of PET scanning by an experienced neuropsychologist (MAB,
CSand AV).The CRS-Ris a standardized and validated (Schnakers et al.,
2008) neurobehavioural assessment scale to determine patients' level
of consciousness. CRS-R has shown superior performance in detecting
consciousness in severely brain-damaged patients when compared to
other scales (Giacino et al., 2002) or unstructured neurological
assessment (Schnakers et al., 2009b). It assesses auditory, visual,
verbal and motor functions as well as communication and arousal
level. The total score ranges between 0 (worst) and 23 (best).

All VS patients fulfilled the international criteria for VS: (1)
spontaneous eye opening with intermittent wakefulness and beha-
viourally assessed sleep-wake cycles; (2) no evidence of language
expression or comprehension; and (3) no evidence of reproducible
voluntary behavioural responses to any stimuli, i.e., no evidence of
awareness of the environment (ANACoEA, 1993; MSTFoPVS, 1994).
All LIS patients fulfilled the international criteria for LIS: (1)
spontaneous eye opening with intermittent wakefulness and beha-
viourally assessed sleep-wake cycles (bilateral ptosis was ruled out as
a complicating factor); (2) no evidence of verbal language expression
(e.g., aphonia or severe hypophonia); (3) quadriplegia or quadripar-
esis; and (4) primary mode of communication that uses vertical or
lateral eye movement or blinking of the upper eyelid (ACoRM, 1995).

The 45 patients (26 men; mean age 46+ 16 years; range 14-
79 years) were scanned between 14 days and 24 years following the
acute brain damage: 16 patients within 3 months and 29 in the

chronic stage, i.e.,, more than 3 months after brain damage. The 24
scans from patients with ambiguous consciousness signs were only
used at the spatial pre-processing stage in order to balance the
number of patients and healthy CO subjects in the creation of the
study-specific PET template (see next section). Table 1 summarizes
the demographic and clinical characteristics (Giacino et al., 2004) of
the 13 VS and 8 LIS patients (10 men; mean age 50 + 15 years; range
21-79 years), which are the focus of this study. Informed consent was
obtained for all control subjects and for LIS patients, and from the legal
representative of VS patients and those with ambiguous conscious-
ness signs. The study was approved by the Ethics Committee of the
University and University Hospital of Liége.

Visual “gold standard”

To compare our classification procedure (described in the next 2
sections) with a “gold standard”, four experts (1 neuropsychologist,
MAB, and 3 neurologists, MB, RH and SL, used to examine patient PET
scans) were required to visually classify anonymized raw PET images.
The images from the 13 VS and 8 LIS patients and 13 healthy CO subjects
(picked at random among the 37 images available) were randomly
presented to each examiner separately. Using only his expertise and
visual inspection, he had then to decide if the images came from a
conscious or unconscious subject. Since the differentiation of LIS
patients from VS patients is the most challenging and relevant clinical
question, we considered the classification error rate of only the VS and
LIS patients. Then the experts' specificity and sensitivity of “conscious-
ness detection” were estimated. Finally the mean and standard
deviation of the error rate, specificity and sensitivity were calculated.

Spatial pre-processing and data extraction

Before applying any analysis tool, either “classic” statistical
mapping or classification method, images from the different subjects
and patients must be brought into a common (standard) space. This
should ensure that homologous brain regions from the different
subjects/patients are aligned, and that their activity can be compared.
The data were spatially pre-processed using the “Statistical Paramet-
ric Mapping” Matlab toolbox SPM8 (Wellcome Trust Centre for
Neuroimaging, University College London, UK).

The first task is to bring all the images, from patients and controls,
into a standard stereotactic space, here the Montreal Neurological
Institute (MNI) space (Evans et al., 1993). This image normalization is
complicated by 2 factors: first, the PET template provided with SPM
was built using H}”0 cerebral blood flow PET (i.e., not FDG cerebral
metabolism) images from healthy subjects, and second, we are here
dealing with a mix of images from normal healthy controls and
patients, some of which with pathological brain deformations. Indeed
some of the patient images present abnormal brain structures, mainly
overinflated ventricles (i.e., ex-vacuo hydrocephalus secondary to
cortical and subcortical lesions and atrophy). The normalization
therefore proceeded in three successive steps:

normalize all 82 images, 45 patients and 37 controls, individually
using the SPM-PET template along with the a priori “gray matter”
(GM) and “white matter” (WM) density images, also available with
SPM. The combination of those 3 images (PET, GM and WM
templates) into a weighted template should better account for
differences in brain tissue intensity and distribution.

average together the 82 normalized images and smooth with an 8-mm
FWHM kernel. This smoothed averaged image can then be used as the
study-specific template, see Fig. 1 (bottom left).

redo the normalization of the 37 controls, 13 VS and 8 LIS images but
using the study-specific template instead of the SPM-PET template.
The images are finally resampled into a 40 x 48 x 34 voxels image,
cubic 4 x4 x4 mm® voxels.

Please cite this article as: Phillips, C.L., et al., “Relevance vector machine” consciousness classifier applied to cerebral metabolism of
vegetative and locked-in patients, Neurolmage (2010), doi:10.1016/j.neuroimage.2010.05.083
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Fig. 1. Examples of normalized PET images of (B) VS patient number VS_04, VS_07, VS_10, VS_13, (C) LIS patient number LIS_01, LIS_02, LIS_03, LIS_04 and (A top row) 2 healthy controls. These images show the raw PET signal after spatial
normalization normalization to the MNI space before being rescaled by the image global mean. The bottom row of panel A shows the study-specific template obtained after the first normalization step (left) and the gray matter mask used to
select voxels (right).
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At each of the normalization steps, the regularisation imposed on
the nonlinear warping of the normalization procedure was also
increased by one order, compared to the standard setting, to prevent
unrealistic warping, as suggested in (Crinion et al., 2007).

After the second normalization step, all images are thus aligned
within the MNI standard space, see Figs. 1A (top row), B and C. Since
the a priori gray matter density map is also in the MNI space, in each
image we sampled the 24603 voxels (out of 64280 voxels from the
whole image), which had a probability higher than 50% to be gray
matter, see Fig. 1 (bottom right).

Finally, to account for differences of global signal between the
images, each set of 24603 retained voxels was scaled by its global
mean signal. The brain metabolism of each healthy control or patient
was thus “summarized” by a single 24603 x 1 data vector extracted
from their FDG-PET scan after normalization, resampling and scaling.

Relevance vector machine classification

Our objective was first to train a “pattern classification” machine
(Bishop, 2006a) to discriminate two groups of subjects, then to apply
the trained classifier on the data from a third group. We employed a
linear “relevance vector machine” (RVM) classifier (Tipping, 2001;
Bishop, 2006b) to discriminate the CO and VS groups, using only the

data vector of each subject and the associated “CO” or “VS” label. Then
the trained RVM classifier was applied on the data from the LIS group,
the output indicating if each LIS patient brain metabolism is “more
like” the conscious CO or the unconscious VS.

RVM is a kernel method, linear in the parameters and similar to the
“support vector machine” (SVM) (Miiller et al., 2001). However, it
offers several advantages over SVM, mainly probabilistic predictions
and automatic estimation of hyper-parameters. See the Appendix
section for a detailed mathematical description of the RVM approach.
In few words, each “data element” consisted in a 24603 x 1 vector
with the sampled metabolic values of each subject's PET image and a
label, 0 or 1 for the VS and CO, respectively. The data from the 37 CO
and 13 VS, i.e,, 50 data vectors and their label, are used to train the
RVM classifier. After training, the RVM classifier is applied on the LIS
data vector and returns a posterior probability value (p-value) of
being in one class or the other: here being more like the CO (p>.5) or
more like the VS (p<.5). An SVM-like “hard decision” could be easily
obtained by rounding the p-value to the closest integer value, i.e., 0 for
VS or 1 for CO, but throws away any probabilistic information
provided by the p-values.

RVM is by definition a multivariate approach and all the features
(here metabolic voxel values) are used simultaneously to obtain a
prediction for an input data vector. Still not all the features from all the

-0.02 -0.01 0 0.01 0.02

Fig. 2. Untresholded relevance map, displayed on top of the study-specific FDG-PET template, and histogram of the voxel relevance. The relevance map shows the relevance of each of
the voxels as a tri-dimensional image (top left, coronal view; top right, sagittal view; bottom left, transverse view) and is built when training the RVM classifier on the whole VS-
versus-CO data set. A positive value (voxel displayed in yellow-red) indicates that a relatively larger metabolic value at those voxels drives the classification of the scan towards the
CO class. Conversely, negative values (voxels displayed in blue-purple) “pushes” to a classification in the VS class if the metabolic values are relatively large in those areas. Voxel with
low relevance, displayed in green, simply do not contribute much to the classification of data. The histogram of the voxel relevance summarizes the distribution of the relevance
values, indicating that a majority of voxels have relevance close to zero. The two red lines on the histogram show the percentile 95 threshold (4-0.0117) applied to select a subset of

voxels.
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images are equally important for the posterior p-value estimation.
With a linear RVM classifier as we used, the relevance of each voxel
(see the last section of the Appendix) can be produced as a weighted
linear combination of the data elements used for training: “voxel
relevance” simply indicates how each individual voxel in an image
contributes to the classification of this image into one class or the
other. When a new image, i.e., an image not used for training the RVM
classifier, has to be classified, the values at its voxels are weighted by
the corresponding voxel relevance and summed together. This value
is either positive or negative, i.e.,, in one category or the other,
providing a simple binary classification. Finally the weighted sum of
voxel values is turned into a posterior probability value, i.e., a value
between 0 and 1, through a sigmoid function, which gives insight on
how certain the classification is.

Since there is one relevance value per voxel, this can be displayed
as an image or “relevance map”, see Fig. 2. Note that relevance is not a
statistical value per se but is just a weighting factor attributed to each
voxel. A whole range of voxel relevance is obtained, which can be
arbitrarily thresholded to keep only the most relevant voxels (or any
other a priori criteria could be used). We here fix a percentile 95
threshold and keep only the 1230 voxels, the “relevant” set, which
have the 5% highest (in absolute value) relevance, see Figs. 2 and 3.
The RVM classifier is then trained again only on those 1230 most
relevant voxels, providing a different classifier based only on a small
subset of the original features. The goal is to assess if those 1230
voxels contain on their own enough information to classify CO and VS
data. This second classifier is applied on the LIS data vector limited to
the same 1230 voxels, providing a second classification estimate for
these data.

Crucially to validate the RVM training and ensure its robustness to
new or unseen data vectors, the RVM classifier, with the full (24603
voxels) or “relevant” (1230 voxels) data set, is cross-validated using a
“leave-one-out” (LOO) technique: Practically the classifier is trained
on the data set minus one “left-out” data element, i.e., 49 data vectors
and their respective labels, and applied on the left-out data vector to
estimate its posterior p-value. These individual p-values are looked at
to check the certainty of the classification. Then the estimated label,

z = +40

z=+50

z=+30

i.e., rounded p-value, is compared with the known label and any
discrepancy is counted as an error, leading to the classifier error rate.
The training and testing for the LOO validation is thus performed 50
times, once for each CO and VS data element.

Results

When the full data set is used to train the classifier, cross-
validation leads to 0% error rate: the label of each data vector, CO or
VS, was correctly retrieved by a classifier trained on the other 49 data
vectors and labels. The CO subjects obtained a mean p-value of .99
(minimum .89) and the VS patients, .06 (maximum .38), see Table 2.A
(third column). When the trained RVM classifier was applied on
the LIS data vectors, all 8 LIS patients had a good probability (mean
p-value of .91 and minimum .61) of being similar to the CO, conscious
healthy subjects, as was expected (see Table 2.B, third column).

The relevance map, see Fig. 2, shows the distribution of voxel
relevance throughout the brain volume. Most voxels, as seen on the
relevance histogram, have a relevance close to zero (greenish color on
Fig. 2) and therefore do not contribute much to the p-value estimate
and classification result. The few ones with large (in absolute value)
relevance are almost equally distributed between those pushing the
classifier towards the CO or VS class, in the two tails of this
distribution.

By thresholding the relevance map at percentile 95 and selecting
only the voxels with a relevance (in absolute value) larger than .0117,
one ends up with the 1230 voxels (out of 24603) that have the largest
influence on the RVM. This thresholded map includes 73 clusters of
voxels, counting from 1 to 251 voxels, and provides information about
which area ensembles in the brain are important to discriminate VS
and CO, see Fig. 3 and Table 3. This thresholding effectively works as a
straightforward feature selection procedure (Guyon and Elisseeff,
2003).

The classifier using only the “relevant” subset of 1230 voxels (95%
percentile) had an overall 2% cross-validation error rate, with mean
and maximum p-values for the VS of .05 and .54 (see Table 2.A, fourth
column), and for the CO a mean and minimum p-value of .99 and .93.

z=+20 z=+10

z=0 z=-10

z=-20

z=-30 z=-40

Fig. 3. Relevance map thresholded at percentile 95: only the 5% most relevant (in absolute value) voxels with relevance larger than .0117 are displayed, over the study-specific FDG-
PET template. The same color scale as in Fig. 2 is used, and the interpretation of the voxel relevance is similar. Transverse slices are in MNI space at z = 50, 40, 30, 20, 10, 0, — 10, — 20,

—30, —40 mm.
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Table 2
Results of the RVM classifier: (A) patients in a vegetative state (VS) and (B) locked-in
syndrome (LIS).

Table 4
Results of the “gold standard” visual classification of consciousness by four experts,
compared to those of the RVM classifier.

Patient Gender/age p-value p-value p-value
number (year) (full set) (relevant set) (“no-edge” set)
(A)

VS_01 M/53 0 0 0
VS_02 F/65 .0003 .0001 .0001
VS_03 M/48 .0014 .0052 .0021
VS_04 M/69 .0099 .0102 .0098
VS_05 M/53 3768 .5383 7384
VS_06 F/42 .0003 .0036 .0020
VS_07 F/36 0 0 0
VS_08 F/69 .1688 .0042 .0022
VS_09 F/79 .0111 .0085 .0144
VS_10 M/62 0 0 0
VS_11 F/70 0 0 0
VS_12 F/35 .2408 .0268 .0109
VS_13 M/55 .0108 .0058 .0016
(B)

LIS_01 M/44 .6094 4835 2821
LIS_02 F/21 .9982 9992 9996
LIS_03 M/44 9997 .9907 9822
LIS_04 F/37 9956 .9893 .9936
LIS_05 M/53 .9887 .8236 .8485
LIS_06 M/35 7094 .9869 .9866
LIS_07 F/46 .9994 .9986 9980
LIS_08 F/42 .9900 .9900 .9889

RVM classifier results: p-values indicate the probability of being conscious, using the
full set, the “relevant” set (95 percentile most relevant voxels) or “no-edge” set (same
as the “relevant” set without the small clusters of voxels on the edge of the brain) of
voxels.

Note that the p-values for the VS patients are those of the leave-one-out cross-
validation, while those for the LIS patients are obtained after training of the full CO and
VS data sets and thus predict their consciousness state.

The only cross-validation error comes from the VS patient which
already had the highest p-value (.38) when employing all the voxels.
When the “relevant” set classifier was applied on the LIS data, 7 out of
8 LIS patients were classified as CO. For the whole LIS group, the mean
and minimum p-value are .91 and .48 (see Table 2.B, fourth column).

Table 3
Description of the main clusters of most relevant voxels (percentile 95, threshold at
+.0117) in the brain volume.

Direction Cluster size Relevance in Anatomical Slices
(CO/VS)  (no. voxels) cluster, mean 4 SD structure
VS 251 —0.01666 +0.00775 Brainstem & z=-—10,
bilateral lower —20, —30,
temporal lobe —40
VS 56 —0.01367 £+ 0.0017 Right cerebellum z=—20,
—30, —40
VS 16 —0.013154+0.00114  Left cerebellum z=-30,
—40
co 211 0.01484 4 0.0223 Left caudate & z=0, 10,
thalamus 20
co 141 0.01493 £ 0.0025 Right caudate z=0, 10,
20
co 45 0.0145140.00219  Right thalamus z=0, 10
20
co 13 0.0124240.00073  Posterior cingulate z=30, 40
cortex & precuneus
co 69 0.0133440.00097  Frontal medial z=130, 40
cortex
co 5 0.012464+0.00079  Left dorsolateral z=30
prefrontal cortex
Cco 8 0.012334+0.00057 Right dorsolateral z=50

prefrontal cortex

Direction of relevance (towards the unconscious vegetative, VS, or conscious control,
CO, group), size of cluster (in voxels), mean + standard deviation of relevance over the
cluster, anatomical description of the cluster volume and transverse slice position (in
MNI space).

Error rate Sensitivity Specificity

Expert 1 33% 50% 77%
Expert 2 19% 75% 85%
Expert 3 33% 75% 62%
Expert 4 19% 88% 77%
Mean = SD of experts 264+7% 72+ 16% 75+ 10%
RVM, full set 0% 100% 100%
RVM, relevant/no-edge set 10% 88% 92%

The error rate, sensitivity and specificity take into account only the 13 VS and 8 LIS
patients, as this classification is the most relevant from a clinical point of view.

The misclassified LIS patient had a p-value only marginally in favour of
the VS group (.48) and was the same atypical LIS patient who also had
a low p-value when using all the voxels.

As can be seen on Fig. 3, among the 1230 voxels of the “relevant”
set, a few of them (usually isolated) are located on the edge of the
brain or ventricles. To avoid any spurious “edge effect”, clusters of
relevant voxels counting less than 5 voxels or clearly lying on an edge
were manually removed from the “relevant” set. This new “no-edge”
set of voxels counts 1056 voxels, distributed in 20 clusters (down
from 73 with the “relevant” set) with 6 to 251 voxels each. A third
classifier was thus trained and validated using this “no-edge” set of
1056 voxels. The results are very similar to those obtained with the
“relevant” set with an overall 2% cross-validation error rate and the
same misclassified LIS patient (see Tables 2.A and B, fifth column).

The results of the “gold standard” visual classification by the
experts are summarized in Table 4. In this table the error rate,
sensitivity and specificity take into account only the 13 VS and 8 LIS
patients, as this classification is the most relevant from a clinical point
of view. Moreover, only one expert did misclassify 2 healthy CO as
unconscious. The performances of the RVM classifier, with either the
full voxel set or the relevant and no-edge voxel sets, are estimated for
the same 21 VS and LIS patients only.

Discussion

The very low error rate of the cross-validation, 0% and 2% for the
full and “relevant” voxel sets respectively, shows the reliability and
efficacy of the RVM classifier at discriminating CO and VS subjects,
even though training is performed on only 49 images. By using only a
subset of voxels, we were expecting a decrease in the performances of
the classifier, even if the voxels selected were the most relevant ones
in the complete set. Still the observed error rate remains relatively
low,! indicating the robustness of the classifier and the relevance of
the few voxels selected.

When the trained classifier is applied on the LIS data, 8 (resp. 7) out
of the 8 LIS images are classified as conscious CO's when using the full
(respectively “relevant”) voxel set. This result is crucial for medical
staff and patient carers as the LIS scans are not easily distinguishable
from the VS ones by visual examination. Currently LIS patients are
distinguishable from VS patients only through the interpretation of
multiple clinical signs from bedside estimation and examination of
various data recordings (PET, MRI/CT, EEG). The subject LIS_01, with
the lowest probability, p=.61 (resp. p=.48) of being similar to the
CO using the full (resp. “relevant”) set of voxel, is in fact an atypical
post-traumatic LIS patient with both brainstem and cortical lesions.
This intermediate p-value is a sign that the PET image of that patient
does not allow a reliable classification in the CO or VS class. The

! Note that, if the threshold for voxel selection is fixed at the 90% percentile, i.e.,
2430 voxels are retained, the error rate for the cross-validation and LIS patient
classification is zero.
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patient could simply have fallen asleep during the examination or
temporarily been at a lower level of consciousness, which cannot be
monitored. The p-values of the other LIS patients are much higher,
usually above .95, and would provide a strong argument in favour of
the LIS diagnosis. For example, the subject LIS_02 was clinically
comatose when studied by PET 14 days post-brainstem stroke. Only
ERP's were able to indicate presence of command following and hence
of consciousness on day 49 (clinical details and cognitive ERP have
been published in Schnakers et al., 2009a). This case is interesting as
we believe the PET scan, showing no hypometabolism in any supra-
tentorial area, is incompatible with the diagnosis of coma or VS.
Indeed, we previously demonstrated that the latter conditions are
characterized by a widespread frontoparietal cortical hypometabolism
(Laureys et al., 1999b; Laureys et al., 2004). In our view, this patient
classified as probably conscious by the RVM, indeed most likely was in
pseudo-coma or total LIS (Laureys et al., 2005) during the PET study.

By comparison, the “gold standard” visual classification of PET
scans by an expert is outperformed by the automatic RVM approach, as
shown in Table 4. In all cases, the expert had a higher error rate of
discriminating LIS from VS patients and their sensitivity and specificity
was lower than that of the RVM classifier. This emphasises the need for
areproducible, systematic and user-independent interpretation of the
PET data from patients with disorders of consciousness.

One key advantage of the RVM method over other similar
approaches (like SVM) is clearly the estimated posterior probability
associated with the classification: In a medical environment where a
patient has to be diagnosed, one would consider more cautiously a
classification result with a p-value of 51% to be in one class than with a p-
value of 99%. Still this probability should not be regarded as a regressor
estimate of the spectrum of consciousness level, since training is only
performed on 2 classes of subjects/patients at both extremes, fully
conscious or unconscious. Regressing out the consciousness level of
patients would require a regression model and, for training, rely on data
including patients at intermediate level of consciousness with their
(independently) estimated consciousness level.

The validation of any “pattern classification” machine relies on the
total independence between the training and the test data sets. Here
this assumption is not totally met as LIS images were included in the
building of the study-specific template. This could in theory bias the
classification as the training data (CO/VS data) are not totally
independent from the LIS images, through the study-specific template
used to normalize all the images. This issue is actually the same, still in
theory, for the LOO cross-validation procedure, as the “left-out” data
are not entirely independent from the other “left-in” data used for the
training. Nevertheless the bias, if any, should be minimal as the
template is the smoothed average of 82 FDG-PET images (which by
nature have a low spatial resolution): the inclusion/exclusion of one
single image (for the CO-versus-VS cross-validation) or even 8 images
(prediction for the LIS data) would hardly affect the study-specific
template and the spatial normalization of the other images.

The relevance map, thresholded or not, effectively shows a
network of brain areas whose relative level of activity taken together
allows the discrimination between two classes of data, here conscious
and unconscious subjects. Since the data were scaled by their mean,
large negative (resp. positive) relevance at voxel k can be interpreted
as this: a relatively larger metabolic value at voxel k pleads towards
this data vector being from class VS (resp. CO). Still the relevance map
is not like a classic statistical map and the values observed at each
voxel have no statistical meaning on their own. Looking at the 5% most
relevant voxels, as seen on Fig. 3 and summarized in Table 3, the
highlighted areas broadly correspond to regions involved in con-
sciousness and resting-state networks. Indeed VS patient cerebral
dysfunction was not identified in one brain region but classic “group
comparison” statistical analyses have shown a wide frontoparietal
network encompassing the polymodal associative cortices (Laureys et
al., 19993, b, 2002): bilateral lateral frontal regions, parieto-temporal

and posterior parietal areas, mesiofrontal, posterior cingulate and
precuneal cortices and bilateral thalami and caudate nuclei (for a
review, see Laureys et al., 2004). These regions are also known to be
the most active “by default” in resting non-stimulated conditions
(Raichle and Mintun, 2006) and to be important in various functions
that are necessary for consciousness, such as attention, memory and
language (Baars et al., 2003). Another hallmark of the vegetative state
is the relative sparing of metabolism in the brainstem (encompassing
the ponto-mesencephalic reticular formation, the hypothalamus and
the basal forebrain; Laureys, 2004), allowing for the maintenance of
vegetative functions in these patients such as sleep-wake cycles,
autonomic and ventilatory control and cranial nerve reflexes.

There is a number of highlighted voxels on the edge of the brain.
This is probably due to different normalization accuracy between the
two groups: CO subjects had healthy brains and were certainly more
easily normalized, while some VS patients, but certainly not all (see
Fig. 1.B), had brain with abnormally large ventricles and reduced gray
matter volume, making them much more difficult to normalize. These
anatomical differences are more obvious at the “edge” of the brain or
ventricles and are picked up by the classifier. Nevertheless, the LOO
cross-validation proves that the classification is not entirely driven by
such voxels from a single image, as not all VS images have abnormal
anatomy neither the same deformations. The LIS scans are generally
not easily distinguishable from those of VS patients and still RVM
trained on the “relevant” set accurately and reliably estimated that
they were more like the CO than VS in 7 out of 8 cases. Moreover,
when those possibly spurious voxels are removed and the RVM is
trained on the “no-edge” voxel set, the validation and classification
results are similar to those obtained previously further indicating that
RVM results are not strongly driven by those anatomical differences.

Conclusions

Bedside assessment in patients with disorders of consciousness
following severe traumatic or non-traumatic brain damage continues
to represent a major challenge. Despite the importance of diagnostic
accuracy and advances in the past 15 years, Schnakers et al. (2009b)
recently showed that the rate of misdiagnosis among those patients
remains around 40%. While these figures cause concern, they at least
emphasize that bedside diagnosis was possible—otherwise they
would not have been identified as having been misdiagnosed.
Hence, the here presented automated and objective “consciousness
classifier” based on functional neuroimaging may have clinical
relevance to confirm (or deny) the bedside diagnosis (Giacino et al.,
2006; Laureys et al., 2006).

Consciousness in itself is not an on-off phenomenon but is part of a
continuum (Baars et al., 2003), but here the groups of subjects used
were sampled from both extremities of the consciousness spectrum:
conscious LIS patients and controls versus unconscious VS patients. In
this case, a two-class or binary classification does make sense. The
extension of the RVM approach and its application to better diagnose
intermediate states of consciousness, such as “minimally conscious
state” (MCS) patients (Boly et al., 2008; Demertzi et al., 2009), remain
to be explored. The proposed examiner-independent method for
classification of the level of consciousness based on cerebral metabolic
PET data sets in patients with severe brain damage is a much
welcomed tool in clinical nuclear medicine and neurology. This not
only has ethical consequences but is also crucial for the patient's
rehabilitation and daily management (Laureys and Boly, 2007).

In this work, we demonstrated the ability of an RVM classifier
machine to distinguish the brain metabolism of healthy controls and
VS patients and we confirmed its utility in diagnosing LIS patients,
sometimes clinically mistaken for VS (Ledn-Carrién et al., 2002;
Laureys et al,, 2005). In conclusion, RVM classification of cerebral
metabolic images obtained in coma survivors could become a useful
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tool for the automated PET-based diagnosis of altered states of
consciousness.
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Appendix A. Relevance vector machine

In supervised learning, a training data set is used to teach a
“machine”. This data set comprises a set of N input vectors {x,}A_
and associated target value {t,})—,. This target value t, can be a
sample from a set of continuous values, ie. a regressor, for a
regression problem, or a binary value, i.e. class label, for a
classification problem. From this training data set {x,t,}Y—;, we
wish to learn a mapping f(x,) predicting the target t,, in order to
predict the target t, for any new input X..

A popular and flexible form for the function f(x) is

M
foaw) = 2 widi(x) = W(x) (1)

and the output value is a linearly weighted, by the adjustable
parameters w=[wq,Wy,...wy ", sum of M basis function ¢(x) = [¢1(x),
d2(X),...dm(X)]". These basis functions are fixed and user-defined but
of any form. The objective of the training is thus to estimate the “best”
parameters w given a set of training data {X,t.},—1" and fixed
functions ¢;(x).

Relevance vector machine for regression

“Relevance vector machine” (RVM) is a Bayesian framework for
learning in general models described here above. RVM actually relies
on a particular form of Eq. (1), similar to that used for “support
vector machine” (SVM) (Burges, 1998; Vapnik, 1998; Scholkopf
et al., 1999):

flow) = X WKGex) + wy = W) @)

with ¢(x)=[1, K(x,x1), K(xX2),.K(x.x,)]" and w=[wq, Wy,..., wy]"
Note that the constant term wy is introduced in the vector of unknown
parameters w. The kernel function K(x,x;) so defines one basis function
per “data point” x in the training set. RVM regression employs model
(2) with an additive noise term to link the vectorial input x,, and scalar
target variable t,

th =f(xps W) + ¢ 3)

where ¢, is a zero-mean white noise process with variance o2, i.e., p
(enl0®)=N(€;]0,0%). Considering noise precision 3 instead of its
variance o2, i.e., posing 3=02, and assuming the independence of
the samples t,, the likelihood of the complete training data set is

pleXow ) = @)™ exp (= 5 [e—ow] ) @)

where t =[ty,...tn]5, X={x,}0' =1, and ®=[d(x1), $(X2),...d(x)]" is a
Nx(N+1) design matrix. With more parameters (N +1) than
training data samples (N), direct maximum-likelihood estimation of
w would lead to over-fitting. In the RVM Bayesian framework, zero-

mean Gaussian shrinkage priors are imposed on every w; and,
assuming the independence of the parameters, we have:

N
p(wiley) = N(w; |0, 0 )=p(w|o) = I Nw; (0,05 (5)

with @ =[ap, o4,...an]", a N +1 vector of hyper-parameters represent-
ing the precision on the parameters. Finally uniform hyper-priors are
assumed for all the precision hyper-parameters, « and (3. An
interesting property of these hyper-priors is that when the evidence
of the model is maximized with respect to the hyper-parameters, a
few of them go to infinity which effectively constraints the
corresponding parameters to be zero. This is a type of “automatic
relevance determination” (MacKay, 1994; Neal, 1996) leading to a
sparse set of parameters w. Using Bayes rule and the properties of
Gaussian functions, the posterior distribution of the weight can also
be described by a Gaussian:

pw|X,t,o,p) = N(w|m, %) (6)
where the mean m and covariance 3, are given by

m= p3d't ™
3= (A+pdd)!
with A= diag(ay,....an) a diagonal matrix of precisions.

In practice, the values of a and 3 are estimated by maximizing the
marginal likelihood p(t|X,o,3), i.e., using a type-Il maximum-likelihood
method (Berger, 1985). Only the most probable values are thus
calculated, an approximation to estimating and using their full
distribution. With this simplification, the marginal likelihood can be
obtained by integrating out the weight parameters

p(t|X, o,B) = [p(t|X.w,p)p(w,c)dw = N(t|0,3”' + DA™ ') (8)

Values of v and B that maximizes (the log of) (8) can then be
obtained iteratively, using the following update rules:

new _ 1—043;

QL
i mlz

new,—1 __ Ht_(DmHz
B = N=2"1_ 1 (1—ay3y)

where m; is the ith element of the estimated posterior weight w and
3,; the ith diagonal element of the posterior covariance matrix 3 from
Eq. (7).

Once the iterative procedure has converged to the “most probable”
values ayp and Byp, the distribution of target value t, for a new data
point x, is also Gaussian and estimated through

p(t.|X.t, oy, Pyp) = fp(t* |X,w, Bup)P(W X, t, 0tyip, Byp)dw

(10)
= N (t,|m'$(x,),07)
with the variance estimated as
0f = Bup + d(x.) Ib(x,) (11)

where %, is given by Eq. (7) with o and 3 set at their optimal value.
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Relevance vector machine for classification

RVM classification follows the same framework as described
in the previous section but with a modified likelihood function.
Two-class problems call for a binary target variable t,={0,1} and
we want to predict the posterior probability of belonging to one
of the two classes, given the input data x,. The linear Eq. (2) is
therefore generalized by applying a logistic sigmoid function
0(a) = 7ap=g Such that

o v _ 1
fxsw) = o(w d(x)) = W (12)

Note that there is no noise variance here. Then, using the Bernouilli
distribution, the likelihood of the training data set is defined as

pEXw) = 1 owdx,)" (1—ow o) " (13)

n=1

Unlike the regression case, it is now impossible to integrate out
the weight parameters w to directly obtain the weight posterior like in
Eq. (6) or the marginal likelihood (Eq. (8)). Using the Laplace
approximation, and for a fixed value of ¢, the mode of the posterior
distribution over w is obtained by maximizing:

log p(w|X. t,a) = log (p(t|X,w)p(w|a))—log p(t|X, ) (14)
N
= n; (ty logf (x; W) + (1—ty) log(1—f (X, w)))

— %WEAW + const

The mode and variance of the Laplace approximation for w are

Wyp = Sppd'Bt (15)
Syp = (P'BO + A)!

where B is an NxN diagonal matrix with b, =f(x,;w)(1-f(x,;w)).
Using this Laplace approximation, the marginal likelihood is
expressed as

p(t|X.c) = [p(t|X. w)p(w|c)dw

16
= p(t|X, Wyp)P(Wyp | 00) 20"/ ? | Sy | e

1/2

When maximizing Eq. (16) with respect to each ¢, one eventually
obtains an update rule identical to Eq. (9).

Linear kernel and relevant features

When a linear kernel is used, K(x,x;) is simply the scalar product
between the 2 vectors, i.e., K(x,x;) = x-x;. Then Eq. (2) can be rewritten
as

N N
fxw) = - wiK(x;x) + wy = x° <Z w,»x,») +wy=xr1+ W,
i=1 i=1

(17)

The vector r=3; _; V¥ wx; is thus a weighted mean of the training
data vectors and can be interpreted as the relevance of each feature:
First, the larger the absolute value of an element r,, the more
important it is to discriminate the classes. Second the sign of r
indicates the direction of this feature's influence, i.e., towards the class
labelled 0 (r,<0) or 1 (r,>0).
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