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The vegetative state is a devastating condition where patients awaken from their coma (i.e., open their eyes)
but fail to show any behavioural sign of conscious awareness. Locked-in syndrome patients also awaken from
their coma and are unable to show any motor response to command (except for small eye movements or
blinks) but recover full conscious awareness of self and environment. Bedside evaluation of residual cognitive
function in coma survivors often is difficult because motor responses may be very limited or inconsistent. We
here aimed to disentangle vegetative from “locked-in” patients by an automatic procedure based on machine
learning using fluorodeoxyglucose PET data obtained in 37 healthy controls and in 13 patients in a vegetative
state. Next, the trainedmachinewas tested on brain scans obtained in 8 patients with locked-in syndrome.We
used a sparse probabilistic Bayesian learning framework called “relevance vector machine” (RVM) to classify
the scans. The trained RVM classifier, applied on an input scan, returns a probability value (p-value) of being in
one class or the other, here being “conscious” or not. Training on the control and vegetative state groups was
assessed with a leave-one-out cross-validation procedure, leading to 100% classification accuracy. When
applied on the locked-in patients, all scans were classified as “conscious”with amean p-value of .95 (min .85).
In conclusion, even with this relatively limited data set, we could train a classifier distinguishing between
normal consciousness (i.e., wakeful conscious awareness) and the vegetative state (i.e., wakeful unawareness).
Cross-validation also indicated that the clinical classification and the one predicted by the automatic RVM
classifier were in accordance. Moreover, when applied on a third group of “locked-in” consciously aware
patients, they all had a strong probability of being similar to the normal controls, as expected. Therefore, RVM
classification of cerebral metabolic images obtained in coma survivors could become a useful tool for the
automated PET-based diagnosis of altered states of consciousness.
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Introduction

Following traumatic or non-traumatic brain damages, some
patients will fall into an irreversible coma, and possibly brain death.
Still some others will “awaken” (i.e., recover sleep–wake cycles) from
their coma but will remain fully unaware (i.e., will only show reflex
movements without command following) in a “vegetative state” (VS).
“Locked-in syndrome” (LIS) patients also awaken from their coma but
recover full consciousness while being selectively de-efferented (i.e.,
they have no means of producing speech, limb or face movements in
response to commands except for small eye movements or blinks)
(Laureys, 2005; Laureys et al., 2005). Patients with LIS sometimesmay
remain comatose for days or weeks, needing artificial respiration and
then gradually wake up, remaining paralyzed and voiceless, superfi-
cially resembling patients in VS. Distressingly, studies reported that
the diagnosis of LIS on average takes over 2.5 months and in some
cases took 4 to 6 years before aware and sensitive patients, locked in
an immobile body, were recognized as being conscious (León-Carrión
et al., 2002). Recognizing unambiguous signs of conscious perception
of the environment and of the self in coma survivors can be very
challenging. This difficulty is reflected in the frequent misdiagnoses
(approximately 40%) of the vegetative state (Laureys et al., 2004;
Schnakers et al., 2009b). An accurate and reliable evaluation of the
level and content of consciousness in severely brain-damaged
patients is thus of paramount importance for their appropriate
management.
ness classifier applied to cerebral metabolism of
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Table 1
Demographic, clinical, electroencephalographic (EEG), structural neuroimaging of patients in a vegetative state (VS) and locked-in syndrome (LIS).

Patient
number

Gender /age
(year)

Etiology Interval
(m)

Arousala Auditory functiona Visual
functiona

Motor functiona Oro-motor
functiona

Communicationa EEG MRI/CT

VS_01 M/53 Anoxia 10 Eyes opening
without stimulation

Auditory startle Visual
startle

Spastic quadriplegia,
abnormal posturing

Oral reflexive
movement

None Generalized suppression No focal lesionsb

VS_02 F/65 Anoxia 9 Eyes opening with
stimulation

Auditory startle Visual
startle

Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

None Low voltage delta activity
more prominent on the
right

Corticosubcortical atrophy and
secondary hydrocephalus without
focal lesion

VS_03 M/48 Anoxia 30 Eyes opening with
stimulation

Auditory startle Visual
startle

Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

None Low-voltage delta,
discontinuous generalized
paroxistic activity

Diffuse corticosubcortical atrophy
and secondary hydrocephalus
without focal lesion

VS_04 M/69 Anoxia 1 Eyes opening with
stimulation

None None Spastic quadriplegia,
abnormal posturing

Oral reflexive
movement

None Generalized theta-delta
activity

Lesions in bilateral paraventricular,
insular, prefrontal and left parietal
areas

VS_05 M/53 CVA 2 Eyes opening
without stimulation

Auditory startle Visual
startle

Spastic quadriplegia,
flexion withdrawal

None None Generalized theta-delta
activity

Quadri-ventricular hemorrhage,
multifocal cortical and brainstem
lesions

VS_06 F/42 Anoxia 3 Eyes opening
without stimulation

Auditory startle None Spastic quadriplegia,
abnormal posturing

Vocalization/
oral movement

None NA NA

VS_07 F/36 Anoxia 30 Eyes opening
without stimulation

Auditory startle Visual
startle

Spastic quadriplegia,
flexion withdrawal

None None Generalized theta activity,
sporadic delta dysrythmia

Corticosubcortical atrophy, bilateral
subcortical and prefrontal lesions

VS_08 F/69 Trauma 1 Eyes opening with
stimulation

Auditory startle None Spastic quadriplegia,
no response to
noxious stimulation

Oral reflexive
movement

None Generalized theta-delta
activity, left frontal
paroxistic activity

Multifocal meningeal hemorrhages,
bilateral temporal contusions, left
frontal subdural hematoma

VS_09 F/79 Sub-arachnoid
hemorrhage

1 None None None Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

None Generalized theta activity,
left central paroxistic
activity

Multifocal meningeal and
intraventricular hemorrhagesb

VS_10 M/62 Anoxia 9 Eyes opening
without stimulation

Auditory startle None Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

None Theta-delta activity
(parietal and occipital)

Corticosubcortical atrophy,
periventricular, basal ganglia,
cerebellar and brainstem lesions

VS_11 F/70 Encephalitis 1 Eyes opening with
stimulation

Localization
to sound

Visual
startle

Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

None Generalized non-reactive
delta activity

Bilateral prefrontal, temporal and
periventrical lesions
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Table 1 (continued)

Patient
number

Gender /age
(year)

Etiology Interval
(m)

Arousala Auditory functiona Visual
functiona

Motor functiona Oro-motor
functiona

Communicationa EEG MRI/CT

VS_12 F/35 Anoxia 17 Eyes opening
without stimulation

Auditory startle Visual
startle

Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

None Disorganized low-voltage
theta-delta basic rhythm

Focal lesions in basal ganglia

VS_13 M/55 Anoxia 6 Eyes opening with
stimulation

Auditory startle None Spastic quadriplegia,
abnormal posturing

Oral reflexive
movement

None Generalized delta activity NA

LIS_01 M/44 Anoxia 285 Eyes opening with
stimulation

Reproducible
movement to
command

Visual
pursuit

Spastic quadriplegia,
flexion withdrawal

Vocalization/
oral movement

None Alternating alpha-theta
and sporadic delta
activity

Bilateral frontal corticosubcortical,
brainstem and cerebellar atrophy

LIS_02 F/21 Basilar artery
thrombosis

0.5 None None None Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

None Unstructured theta
basic rhythm

Multifocal ischemic lesions in
brainstem, bilateral cerebellum
and thalamus

LIS_03 M/44 Basilar artery
thrombosis

51 Attention Consistent
movement
to command

Object
recognition

Spastic quadriplegia,
functional object use

None Non-
functional :
intentional

Reactive alpha basic
rhythm

Brainstem, bilateral cerebellum,
thalamus, right occipital and
mesiotemporal lesions

LIS_04 F/37 Basilar artery
thrombosis

1 Eyes opening
without stimulation

Reproducible
movement
to command

Object
recognition

Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

Non-
functional :
intentional

Reactive 6 Hz basic
rhythm

Multifocal ischemic lesions in
brainstem, right temporal and
prefrontal areasb

LIS_05 M/53 Basilar artery
thrombosis

3 None Reproducible
movement
to command

Visual
pursuit

Spastic quadriplegia,
abnormal posturing

Vocalization/
oral movement

Non-
functional :
intentional

6 Hz basic rhythm Ischemic lesion in brainstem,
midbrain and left cerebellum

LIS_06 M/35 Trauma 285 Attention Auditory startle Visual
startle

Spastic quadriplegia,
flexion withdrawal

Vocalization/
oral movement

None Alpha activity with
posterior theta
dysrythmia

Diffuse corticosubcortical atrophy
and secondary hydrocephalusb

LIS_07 F/46 Basilar artery
thrombosis

1 Attention Consistent
movement
to command

Object
recognition

Spastic quadriplegia,
flexion withdrawal

Oral reflexive
movement

Functional:
accurate

Reactive alpha activity,
intermittent delta-theta

Ischemic lesion in brainstem
extending to midbrain

LIS_08 F/42 Brainstem
hemorrhage

2 Eyes opening with
stimulation

Reproducible
movement
to command

Visual
pursuit

Spastic quadriplegia,
flexion withdrawal

None Non-
functional :
intentional

Diffuse theta activity Hemorrhagic lesion in brainstem

Demographic data: patient number, gender and age (at scanning time), etiology, interval (in month) between the acute brain insult and scanning, Coma Recovery Scale—Revised subscores observations (arousal, auditory function, visual
function, motor function, oro-motor function, communication), EEG characteristics and structural MRI/CT diagnostics. NA=not available.

a Based on Coma Recovery Scale—Revised assessment (CRS-R).
b X-ray CT data.
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For the time being, consciousness cannot bemeasured objectively by
any equipment and its bedside estimation requires the interpretation of
multiple clinical signs. Behavioural assessment remains the “gold
standard” for detecting signs of consciousness and, hence, for determin-
ing diagnosis. Clinically, we are limited to the appraisal of the patient's
capacity to perceive the externalworld and to voluntarily interactwith it
(i.e., perceptual awareness). Bedside evaluation of residual brain
function in severely brain-damaged patients is complicated by the
presence ofmotor impairment, tracheotomy, fluctuating arousal level or
ambiguous and rapidly habituating responses (Majerus et al., 2005).

We here aim to disentangle VS from LIS patients by teaching a
“machine” to discriminate consciousness, using fluorodeoxyglucose
PET (FDG-PET) scans obtained in healthy controls and patients in VS.
The capacity of themachine at discriminating new (or unseen) images
was directly assessed via a cross-validation procedure on data from
the healthy controls and VS patients. Next, the trained machine was
further tested on brain scans obtained in patients with LIS.

Materials and methods

PET data

The data consisted of FDG-PET scans from 37 healthy control
subjects, further referred to as the “CO” group, and 45 patients. The 45
patients are characterized by different pathologies and split into three
subgroups: 13 in a vegetative state (“VS”), 8 with locked-in syndrome
(“LIS”), plus 24 patients with ambiguous consciousness signs.

FDG-PET reflects the uptake of glucose by the brain, i.e., its energy
consumption. Areas of hypometabolism and relatively preserved
metabolism can be associated to a decrease (preservation) of local
brain activity (Laureys et al., 2008). Cerebral metabolism data were
acquired after intravenous injection of five to ten mCi (185–370 MBq)
FDG (as described in Laureys et al., 2000) on a Gemini PET scan
(Philips Medical Systems) at Liège university hospital.

Subjects

The 37 control subjects were healthy volunteers (17 men; mean
age 45±17 years; range 18–80 years). All patients had standardized
behavioural assessment using the Coma Recovery Scale—Revised
(CRS-R) (Giacino et al., 2004; Kalmar and Giacino, 2005) performed
the day of PET scanning by an experienced neuropsychologist (MAB,
CS andAV). TheCRS-R is a standardized and validated (Schnakers et al.,
2008) neurobehavioural assessment scale to determine patients' level
of consciousness. CRS-R has shown superior performance in detecting
consciousness in severely brain-damaged patients when compared to
other scales (Giacino et al., 2002) or unstructured neurological
assessment (Schnakers et al., 2009b). It assesses auditory, visual,
verbal and motor functions as well as communication and arousal
level. The total score ranges between 0 (worst) and 23 (best).

All VS patients fulfilled the international criteria for VS: (1)
spontaneous eye opening with intermittent wakefulness and beha-
viourally assessed sleep–wake cycles; (2) no evidence of language
expression or comprehension; and (3) no evidence of reproducible
voluntary behavioural responses to any stimuli, i.e., no evidence of
awareness of the environment (ANACoEA, 1993; MSTFoPVS, 1994).
All LIS patients fulfilled the international criteria for LIS: (1)
spontaneous eye opening with intermittent wakefulness and beha-
viourally assessed sleep–wake cycles (bilateral ptosis was ruled out as
a complicating factor); (2) no evidence of verbal language expression
(e.g., aphonia or severe hypophonia); (3) quadriplegia or quadripar-
esis; and (4) primary mode of communication that uses vertical or
lateral eye movement or blinking of the upper eyelid (ACoRM, 1995).

The 45 patients (26 men; mean age 46±16 years; range 14–
79 years) were scanned between 14 days and 24 years following the
acute brain damage: 16 patients within 3 months and 29 in the
Please cite this article as: Phillips, C.L., et al., “Relevance vector ma
vegetative and locked-in patients, NeuroImage (2010), doi:10.1016/j.ne
chronic stage, i.e., more than 3 months after brain damage. The 24
scans from patients with ambiguous consciousness signs were only
used at the spatial pre-processing stage in order to balance the
number of patients and healthy CO subjects in the creation of the
study-specific PET template (see next section). Table 1 summarizes
the demographic and clinical characteristics (Giacino et al., 2004) of
the 13 VS and 8 LIS patients (10 men; mean age 50±15 years; range
21–79 years), which are the focus of this study. Informed consent was
obtained for all control subjects and for LIS patients, and from the legal
representative of VS patients and those with ambiguous conscious-
ness signs. The study was approved by the Ethics Committee of the
University and University Hospital of Liège.

Visual “gold standard”

To compare our classification procedure (described in the next 2
sections) with a “gold standard”, four experts (1 neuropsychologist,
MAB, and 3 neurologists, MB, RH and SL, used to examine patient PET
scans) were required to visually classify anonymized raw PET images.
The images from the 13VS and 8 LIS patients and 13healthy CO subjects
(picked at random among the 37 images available) were randomly
presented to each examiner separately. Using only his expertise and
visual inspection, he had then to decide if the images came from a
conscious or unconscious subject. Since the differentiation of LIS
patients from VS patients is the most challenging and relevant clinical
question, we considered the classification error rate of only the VS and
LIS patients. Then the experts' specificity and sensitivity of “conscious-
ness detection” were estimated. Finally the mean and standard
deviation of the error rate, specificity and sensitivity were calculated.

Spatial pre-processing and data extraction

Before applying any analysis tool, either “classic” statistical
mapping or classification method, images from the different subjects
and patients must be brought into a common (standard) space. This
should ensure that homologous brain regions from the different
subjects/patients are aligned, and that their activity can be compared.
The data were spatially pre-processed using the “Statistical Paramet-
ric Mapping” Matlab toolbox SPM8 (Wellcome Trust Centre for
Neuroimaging, University College London, UK).

The first task is to bring all the images, from patients and controls,
into a standard stereotactic space, here the Montreal Neurological
Institute (MNI) space (Evans et al., 1993). This image normalization is
complicated by 2 factors: first, the PET template provided with SPM
was built using H2

15O cerebral blood flow PET (i.e., not FDG cerebral
metabolism) images from healthy subjects, and second, we are here
dealing with a mix of images from normal healthy controls and
patients, some of which with pathological brain deformations. Indeed
some of the patient images present abnormal brain structures, mainly
overinflated ventricles (i.e., ex-vacuo hydrocephalus secondary to
cortical and subcortical lesions and atrophy). The normalization
therefore proceeded in three successive steps:

• normalize all 82 images, 45 patients and 37 controls, individually
using the SPM-PET template along with the a priori “gray matter”
(GM) and “white matter” (WM) density images, also available with
SPM. The combination of those 3 images (PET, GM and WM
templates) into a weighted template should better account for
differences in brain tissue intensity and distribution.

• average together the82normalized images and smoothwith an8-mm
FWHMkernel. This smoothed averaged image can then be used as the
study-specific template, see Fig. 1 (bottom left).

• redo the normalization of the 37 controls, 13 VS and 8 LIS images but
using the study-specific template instead of the SPM-PET template.
The images are finally resampled into a 40×48×34 voxels image,
cubic 4×4×4 mm3 voxels.
chine” consciousness classifier applied to cerebral metabolism of
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Fig. 1. Examples of normalized PET images of (B) VS patient number VS_04, VS_07, VS_10, VS_13, (C) LIS patient number LIS_01, LIS_02, LIS_03, LIS_04 and (A top row) 2 healthy controls. These images show the raw PET signal after spatial
normalization normalization to the MNI space before being rescaled by the image global mean. The bottom row of panel A shows the study-specific template obtained after the first normalization step (left) and the gray matter mask used to
select voxels (right).

5
C.L.Phillips

et
al./

N
euroIm

age
xxx

(2010)
xxx–xxx

Please
cite

this
article

as:
Phillips,

C.L.,
et

al.,
“Relevance

vector
m
achine

”
consciousness

classifier
applied

to
cerebral

m
etabolism

of
vegetative

and
locked-in

patients,N
euroIm

age
(2010),doi:10.1016/j.neuroim

age.2010.05.083

http://dx.doi.org/10.1016/j.neuroimage.2010.05.083


6 C.L. Phillips et al. / NeuroImage xxx (2010) xxx–xxx
At each of the normalization steps, the regularisation imposed on
the nonlinear warping of the normalization procedure was also
increased by one order, compared to the standard setting, to prevent
unrealistic warping, as suggested in (Crinion et al., 2007).

After the second normalization step, all images are thus aligned
within the MNI standard space, see Figs. 1A (top row), B and C. Since
the a priori gray matter density map is also in the MNI space, in each
image we sampled the 24603 voxels (out of 64280 voxels from the
whole image), which had a probability higher than 50% to be gray
matter, see Fig. 1 (bottom right).

Finally, to account for differences of global signal between the
images, each set of 24603 retained voxels was scaled by its global
mean signal. The brain metabolism of each healthy control or patient
was thus “summarized” by a single 24603×1 data vector extracted
from their FDG-PET scan after normalization, resampling and scaling.

Relevance vector machine classification

Our objective was first to train a “pattern classification” machine
(Bishop, 2006a) to discriminate two groups of subjects, then to apply
the trained classifier on the data from a third group. We employed a
linear “relevance vector machine” (RVM) classifier (Tipping, 2001;
Bishop, 2006b) to discriminate the CO and VS groups, using only the
Fig. 2.Untresholded relevancemap, displayed on top of the study-specific FDG-PET template
the voxels as a tri-dimensional image (top left, coronal view; top right, sagittal view; botto
versus-CO data set. A positive value (voxel displayed in yellow-red) indicates that a relativel
CO class. Conversely, negative values (voxels displayed in blue-purple) “pushes” to a classific
low relevance, displayed in green, simply do not contribute much to the classification of da
values, indicating that a majority of voxels have relevance close to zero. The two red lines on
voxels.

Please cite this article as: Phillips, C.L., et al., “Relevance vector ma
vegetative and locked-in patients, NeuroImage (2010), doi:10.1016/j.ne
data vector of each subject and the associated “CO” or “VS” label. Then
the trained RVM classifier was applied on the data from the LIS group,
the output indicating if each LIS patient brain metabolism is “more
like” the conscious CO or the unconscious VS.

RVM is a kernel method, linear in the parameters and similar to the
“support vector machine” (SVM) (Müller et al., 2001). However, it
offers several advantages over SVM, mainly probabilistic predictions
and automatic estimation of hyper-parameters. See the Appendix
section for a detailed mathematical description of the RVM approach.
In few words, each “data element” consisted in a 24603×1 vector
with the sampled metabolic values of each subject's PET image and a
label, 0 or 1 for the VS and CO, respectively. The data from the 37 CO
and 13 VS, i.e., 50 data vectors and their label, are used to train the
RVM classifier. After training, the RVM classifier is applied on the LIS
data vector and returns a posterior probability value (p-value) of
being in one class or the other: here being more like the CO (pN .5) or
more like the VS (pb .5). An SVM-like “hard decision” could be easily
obtained by rounding the p-value to the closest integer value, i.e., 0 for
VS or 1 for CO, but throws away any probabilistic information
provided by the p-values.

RVM is by definition a multivariate approach and all the features
(here metabolic voxel values) are used simultaneously to obtain a
prediction for an input data vector. Still not all the features from all the
, and histogram of the voxel relevance. The relevancemap shows the relevance of each of
m left, transverse view) and is built when training the RVM classifier on the whole VS-
y larger metabolic value at those voxels drives the classification of the scan towards the
ation in the VS class if the metabolic values are relatively large in those areas. Voxel with
ta. The histogram of the voxel relevance summarizes the distribution of the relevance
the histogram show the percentile 95 threshold (±0.0117) applied to select a subset of

chine” consciousness classifier applied to cerebral metabolism of
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images are equally important for the posterior p-value estimation.
With a linear RVM classifier as we used, the relevance of each voxel
(see the last section of the Appendix) can be produced as a weighted
linear combination of the data elements used for training: “voxel
relevance” simply indicates how each individual voxel in an image
contributes to the classification of this image into one class or the
other. When a new image, i.e., an image not used for training the RVM
classifier, has to be classified, the values at its voxels are weighted by
the corresponding voxel relevance and summed together. This value
is either positive or negative, i.e., in one category or the other,
providing a simple binary classification. Finally the weighted sum of
voxel values is turned into a posterior probability value, i.e., a value
between 0 and 1, through a sigmoid function, which gives insight on
how certain the classification is.

Since there is one relevance value per voxel, this can be displayed
as an image or “relevance map”, see Fig. 2. Note that relevance is not a
statistical value per se but is just a weighting factor attributed to each
voxel. A whole range of voxel relevance is obtained, which can be
arbitrarily thresholded to keep only the most relevant voxels (or any
other a priori criteria could be used). We here fix a percentile 95
threshold and keep only the 1230 voxels, the “relevant” set, which
have the 5% highest (in absolute value) relevance, see Figs. 2 and 3.
The RVM classifier is then trained again only on those 1230 most
relevant voxels, providing a different classifier based only on a small
subset of the original features. The goal is to assess if those 1230
voxels contain on their own enough information to classify CO and VS
data. This second classifier is applied on the LIS data vector limited to
the same 1230 voxels, providing a second classification estimate for
these data.

Crucially to validate the RVM training and ensure its robustness to
new or unseen data vectors, the RVM classifier, with the full (24603
voxels) or “relevant” (1230 voxels) data set, is cross-validated using a
“leave-one-out” (LOO) technique: Practically the classifier is trained
on the data set minus one “left-out” data element, i.e., 49 data vectors
and their respective labels, and applied on the left-out data vector to
estimate its posterior p-value. These individual p-values are looked at
to check the certainty of the classification. Then the estimated label,
Fig. 3. Relevance map thresholded at percentile 95: only the 5% most relevant (in absolute va
PET template. The same color scale as in Fig. 2 is used, and the interpretation of the voxel rele
−30, −40 mm.

Please cite this article as: Phillips, C.L., et al., “Relevance vector ma
vegetative and locked-in patients, NeuroImage (2010), doi:10.1016/j.ne
i.e., rounded p-value, is compared with the known label and any
discrepancy is counted as an error, leading to the classifier error rate.
The training and testing for the LOO validation is thus performed 50
times, once for each CO and VS data element.

Results

When the full data set is used to train the classifier, cross-
validation leads to 0% error rate: the label of each data vector, CO or
VS, was correctly retrieved by a classifier trained on the other 49 data
vectors and labels. The CO subjects obtained a mean p-value of .99
(minimum .89) and the VS patients, .06 (maximum .38), see Table 2.A
(third column). When the trained RVM classifier was applied on
the LIS data vectors, all 8 LIS patients had a good probability (mean
p-value of .91 and minimum .61) of being similar to the CO, conscious
healthy subjects, as was expected (see Table 2.B, third column).

The relevance map, see Fig. 2, shows the distribution of voxel
relevance throughout the brain volume. Most voxels, as seen on the
relevance histogram, have a relevance close to zero (greenish color on
Fig. 2) and therefore do not contribute much to the p-value estimate
and classification result. The few ones with large (in absolute value)
relevance are almost equally distributed between those pushing the
classifier towards the CO or VS class, in the two tails of this
distribution.

By thresholding the relevance map at percentile 95 and selecting
only the voxels with a relevance (in absolute value) larger than .0117,
one ends up with the 1230 voxels (out of 24603) that have the largest
influence on the RVM. This thresholded map includes 73 clusters of
voxels, counting from 1 to 251 voxels, and provides information about
which area ensembles in the brain are important to discriminate VS
and CO, see Fig. 3 and Table 3. This thresholding effectively works as a
straightforward feature selection procedure (Guyon and Elisseeff,
2003).

The classifier using only the “relevant” subset of 1230 voxels (95%
percentile) had an overall 2% cross-validation error rate, with mean
and maximum p-values for the VS of .05 and .54 (see Table 2.A, fourth
column), and for the CO a mean and minimum p-value of .99 and .93.
lue) voxels with relevance larger than .0117 are displayed, over the study-specific FDG-
vance is similar. Transverse slices are in MNI space at z=50, 40, 30, 20, 10, 0,−10,−20,
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Table 4
Results of the “gold standard” visual classification of consciousness by four experts,
compared to those of the RVM classifier.

Error rate Sensitivity Specificity

Expert 1 33% 50% 77%
Expert 2 19% 75% 85%
Expert 3 33% 75% 62%
Expert 4 19% 88% 77%
Mean±SD of experts 26±7% 72±16% 75±10%
RVM, full set 0% 100% 100%
RVM, relevant/no-edge set 10% 88% 92%

The error rate, sensitivity and specificity take into account only the 13 VS and 8 LIS
patients, as this classification is the most relevant from a clinical point of view.

Table 2
Results of the RVM classifier: (A) patients in a vegetative state (VS) and (B) locked-in
syndrome (LIS).

Patient
number

Gender/age
(year)

p-value
(full set)

p-value
(relevant set)

p-value
(“no-edge” set)

(A)
VS_01 M/53 0 0 0
VS_02 F/65 .0003 .0001 .0001
VS_03 M/48 .0014 .0052 .0021
VS_04 M/69 .0099 .0102 .0098
VS_05 M/53 .3768 .5383 .7384
VS_06 F/42 .0003 .0036 .0020
VS_07 F/36 0 0 0
VS_08 F/69 .1688 .0042 .0022
VS_09 F/79 .0111 .0085 .0144
VS_10 M/62 0 0 0
VS_11 F/70 0 0 0
VS_12 F/35 .2408 .0268 .0109
VS_13 M/55 .0108 .0058 .0016

(B)
LIS_01 M/44 .6094 .4835 .2821
LIS_02 F/21 .9982 .9992 .9996
LIS_03 M/44 .9997 .9907 .9822
LIS_04 F/37 .9956 .9893 .9936
LIS_05 M/53 .9887 .8236 .8485
LIS_06 M/35 .7094 .9869 .9866
LIS_07 F/46 .9994 .9986 .9980
LIS_08 F/42 .9900 .9900 .9889

RVM classifier results: p-values indicate the probability of being conscious, using the
full set, the “relevant” set (95 percentile most relevant voxels) or “no-edge” set (same
as the “relevant” set without the small clusters of voxels on the edge of the brain) of
voxels.
Note that the p-values for the VS patients are those of the leave-one-out cross-
validation, while those for the LIS patients are obtained after training of the full CO and
VS data sets and thus predict their consciousness state.
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The only cross-validation error comes from the VS patient which
already had the highest p-value (.38) when employing all the voxels.
When the “relevant” set classifier was applied on the LIS data, 7 out of
8 LIS patients were classified as CO. For the whole LIS group, the mean
and minimum p-value are .91 and .48 (see Table 2.B, fourth column).
Table 3
Description of the main clusters of most relevant voxels (percentile 95, threshold at
±.0117) in the brain volume.

Direction
(CO/VS)

Cluster size
(no. voxels)

Relevance in
cluster, mean±SD

Anatomical
structure

Slices

VS 251 −0.01666±0.00775 Brainstem &
bilateral lower
temporal lobe

z=−10,
−20, −30,
−40

VS 56 −0.01367±0.0017 Right cerebellum z=−20,
−30, −40

VS 16 −0.01315±0.00114 Left cerebellum z=−30,
−40

CO 211 0.01484±0.0223 Left caudate &
thalamus

z=0, 10,
20

CO 141 0.01493±0.0025 Right caudate z=0, 10,
20

CO 45 0.01451±0.00219 Right thalamus z=0, 10,
20

CO 13 0.01242±0.00073 Posterior cingulate
cortex & precuneus

z=30, 40

CO 69 0.01334±0.00097 Frontal medial
cortex

z=30, 40

CO 5 0.01246±0.00079 Left dorsolateral
prefrontal cortex

z=30

CO 8 0.01233±0.00057 Right dorsolateral
prefrontal cortex

z=50

Direction of relevance (towards the unconscious vegetative, VS, or conscious control,
CO, group), size of cluster (in voxels), mean±standard deviation of relevance over the
cluster, anatomical description of the cluster volume and transverse slice position (in
MNI space).
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Themisclassified LIS patient had a p-value onlymarginally in favour of
the VS group (.48) and was the same atypical LIS patient who also had
a low p-value when using all the voxels.

As can be seen on Fig. 3, among the 1230 voxels of the “relevant”
set, a few of them (usually isolated) are located on the edge of the
brain or ventricles. To avoid any spurious “edge effect”, clusters of
relevant voxels counting less than 5 voxels or clearly lying on an edge
were manually removed from the “relevant” set. This new “no-edge”
set of voxels counts 1056 voxels, distributed in 20 clusters (down
from 73 with the “relevant” set) with 6 to 251 voxels each. A third
classifier was thus trained and validated using this “no-edge” set of
1056 voxels. The results are very similar to those obtained with the
“relevant” set with an overall 2% cross-validation error rate and the
same misclassified LIS patient (see Tables 2.A and B, fifth column).

The results of the “gold standard” visual classification by the
experts are summarized in Table 4. In this table the error rate,
sensitivity and specificity take into account only the 13 VS and 8 LIS
patients, as this classification is the most relevant from a clinical point
of view. Moreover, only one expert did misclassify 2 healthy CO as
unconscious. The performances of the RVM classifier, with either the
full voxel set or the relevant and no-edge voxel sets, are estimated for
the same 21 VS and LIS patients only.
Discussion

The very low error rate of the cross-validation, 0% and 2% for the
full and “relevant” voxel sets respectively, shows the reliability and
efficacy of the RVM classifier at discriminating CO and VS subjects,
even though training is performed on only 49 images. By using only a
subset of voxels, we were expecting a decrease in the performances of
the classifier, even if the voxels selected were the most relevant ones
in the complete set. Still the observed error rate remains relatively
low,1 indicating the robustness of the classifier and the relevance of
the few voxels selected.

When the trained classifier is applied on the LIS data, 8 (resp. 7) out
of the 8 LIS images are classified as conscious CO's when using the full
(respectively “relevant”) voxel set. This result is crucial for medical
staff and patient carers as the LIS scans are not easily distinguishable
from the VS ones by visual examination. Currently LIS patients are
distinguishable from VS patients only through the interpretation of
multiple clinical signs from bedside estimation and examination of
various data recordings (PET, MRI/CT, EEG). The subject LIS_01, with
the lowest probability, p=.61 (resp. p=.48) of being similar to the
CO using the full (resp. “relevant”) set of voxel, is in fact an atypical
post-traumatic LIS patient with both brainstem and cortical lesions.
This intermediate p-value is a sign that the PET image of that patient
does not allow a reliable classification in the CO or VS class. The
1 Note that, if the threshold for voxel selection is fixed at the 90% percentile, i.e.,
2430 voxels are retained, the error rate for the cross-validation and LIS patient
classification is zero.
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patient could simply have fallen asleep during the examination or
temporarily been at a lower level of consciousness, which cannot be
monitored. The p-values of the other LIS patients are much higher,
usually above .95, and would provide a strong argument in favour of
the LIS diagnosis. For example, the subject LIS_02 was clinically
comatose when studied by PET 14 days post-brainstem stroke. Only
ERP's were able to indicate presence of command following and hence
of consciousness on day 49 (clinical details and cognitive ERP have
been published in Schnakers et al., 2009a). This case is interesting as
we believe the PET scan, showing no hypometabolism in any supra-
tentorial area, is incompatible with the diagnosis of coma or VS.
Indeed, we previously demonstrated that the latter conditions are
characterized by awidespread frontoparietal cortical hypometabolism
(Laureys et al., 1999b; Laureys et al., 2004). In our view, this patient
classified as probably conscious by the RVM, indeedmost likely was in
pseudo-coma or total LIS (Laureys et al., 2005) during the PET study.

By comparison, the “gold standard” visual classification of PET
scans by an expert is outperformed by the automatic RVMapproach, as
shown in Table 4. In all cases, the expert had a higher error rate of
discriminating LIS fromVS patients and their sensitivity and specificity
was lower than that of the RVM classifier. This emphasises the need for
a reproducible, systematic and user-independent interpretation of the
PET data from patients with disorders of consciousness.

One key advantage of the RVM method over other similar
approaches (like SVM) is clearly the estimated posterior probability
associated with the classification: In a medical environment where a
patient has to be diagnosed, one would consider more cautiously a
classification resultwith a p-value of 51% tobe inone class thanwith a p-
value of 99%. Still this probability should not be regarded as a regressor
estimate of the spectrum of consciousness level, since training is only
performed on 2 classes of subjects/patients at both extremes, fully
conscious or unconscious. Regressing out the consciousness level of
patientswould require a regressionmodel and, for training, rely on data
including patients at intermediate level of consciousness with their
(independently) estimated consciousness level.

The validation of any “pattern classification”machine relies on the
total independence between the training and the test data sets. Here
this assumption is not totally met as LIS images were included in the
building of the study-specific template. This could in theory bias the
classification as the training data (CO/VS data) are not totally
independent from the LIS images, through the study-specific template
used to normalize all the images. This issue is actually the same, still in
theory, for the LOO cross-validation procedure, as the “left-out” data
are not entirely independent from the other “left-in” data used for the
training. Nevertheless the bias, if any, should be minimal as the
template is the smoothed average of 82 FDG-PET images (which by
nature have a low spatial resolution): the inclusion/exclusion of one
single image (for the CO-versus-VS cross-validation) or even 8 images
(prediction for the LIS data) would hardly affect the study-specific
template and the spatial normalization of the other images.

The relevance map, thresholded or not, effectively shows a
network of brain areas whose relative level of activity taken together
allows the discrimination between two classes of data, here conscious
and unconscious subjects. Since the data were scaled by their mean,
large negative (resp. positive) relevance at voxel k can be interpreted
as this: a relatively larger metabolic value at voxel k pleads towards
this data vector being from class VS (resp. CO). Still the relevance map
is not like a classic statistical map and the values observed at each
voxel have no statistical meaning on their own. Looking at the 5%most
relevant voxels, as seen on Fig. 3 and summarized in Table 3, the
highlighted areas broadly correspond to regions involved in con-
sciousness and resting-state networks. Indeed VS patient cerebral
dysfunction was not identified in one brain region but classic “group
comparison” statistical analyses have shown a wide frontoparietal
network encompassing the polymodal associative cortices (Laureys et
al., 1999a, b, 2002): bilateral lateral frontal regions, parieto-temporal
Please cite this article as: Phillips, C.L., et al., “Relevance vector ma
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and posterior parietal areas, mesiofrontal, posterior cingulate and
precuneal cortices and bilateral thalami and caudate nuclei (for a
review, see Laureys et al., 2004). These regions are also known to be
the most active “by default” in resting non-stimulated conditions
(Raichle and Mintun, 2006) and to be important in various functions
that are necessary for consciousness, such as attention, memory and
language (Baars et al., 2003). Another hallmark of the vegetative state
is the relative sparing of metabolism in the brainstem (encompassing
the ponto-mesencephalic reticular formation, the hypothalamus and
the basal forebrain; Laureys, 2004), allowing for the maintenance of
vegetative functions in these patients such as sleep–wake cycles,
autonomic and ventilatory control and cranial nerve reflexes.

There is a number of highlighted voxels on the edge of the brain.
This is probably due to different normalization accuracy between the
two groups: CO subjects had healthy brains and were certainly more
easily normalized, while some VS patients, but certainly not all (see
Fig. 1.B), had brain with abnormally large ventricles and reduced gray
matter volume, making themmuch more difficult to normalize. These
anatomical differences are more obvious at the “edge” of the brain or
ventricles and are picked up by the classifier. Nevertheless, the LOO
cross-validation proves that the classification is not entirely driven by
such voxels from a single image, as not all VS images have abnormal
anatomy neither the same deformations. The LIS scans are generally
not easily distinguishable from those of VS patients and still RVM
trained on the “relevant” set accurately and reliably estimated that
they were more like the CO than VS in 7 out of 8 cases. Moreover,
when those possibly spurious voxels are removed and the RVM is
trained on the “no-edge” voxel set, the validation and classification
results are similar to those obtained previously further indicating that
RVM results are not strongly driven by those anatomical differences.
Conclusions

Bedside assessment in patients with disorders of consciousness
following severe traumatic or non-traumatic brain damage continues
to represent a major challenge. Despite the importance of diagnostic
accuracy and advances in the past 15 years, Schnakers et al. (2009b)
recently showed that the rate of misdiagnosis among those patients
remains around 40%. While these figures cause concern, they at least
emphasize that bedside diagnosis was possible—otherwise they
would not have been identified as having been misdiagnosed.
Hence, the here presented automated and objective “consciousness
classifier” based on functional neuroimaging may have clinical
relevance to confirm (or deny) the bedside diagnosis (Giacino et al.,
2006; Laureys et al., 2006).

Consciousness in itself is not an on–off phenomenon but is part of a
continuum (Baars et al., 2003), but here the groups of subjects used
were sampled from both extremities of the consciousness spectrum:
conscious LIS patients and controls versus unconscious VS patients. In
this case, a two-class or binary classification does make sense. The
extension of the RVM approach and its application to better diagnose
intermediate states of consciousness, such as “minimally conscious
state” (MCS) patients (Boly et al., 2008; Demertzi et al., 2009), remain
to be explored. The proposed examiner-independent method for
classification of the level of consciousness based on cerebral metabolic
PET data sets in patients with severe brain damage is a much
welcomed tool in clinical nuclear medicine and neurology. This not
only has ethical consequences but is also crucial for the patient's
rehabilitation and daily management (Laureys and Boly, 2007).

In this work, we demonstrated the ability of an RVM classifier
machine to distinguish the brain metabolism of healthy controls and
VS patients and we confirmed its utility in diagnosing LIS patients,
sometimes clinically mistaken for VS (León-Carrión et al., 2002;
Laureys et al., 2005). In conclusion, RVM classification of cerebral
metabolic images obtained in coma survivors could become a useful
chine” consciousness classifier applied to cerebral metabolism of
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tool for the automated PET-based diagnosis of altered states of
consciousness.
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Appendix A. Relevance vector machine

In supervised learning, a training data set is used to teach a
“machine”. This data set comprises a set of N input vectors {xn}n=1

N

and associated target value {tn}n=1
N . This target value tn can be a

sample from a set of continuous values, i.e., a regressor, for a
regression problem, or a binary value, i.e., class label, for a
classification problem. From this training data set {xn,tn}n=1

N , we
wish to learn a mapping f(xn) predicting the target tn, in order to
predict the target t* for any new input x*.

A popular and flexible form for the function f(x) is

f ðx;wÞ = ∑
M

i=1
wiϕiðxÞ = wtϕðxÞ ð1Þ

and the output value is a linearly weighted, by the adjustable
parametersw=[w1,w2,...,wM]t, sum ofM basis function ϕ(x)=[ϕ1(x),
ϕ2(x),...,ϕM(x)]t. These basis functions are fixed and user-defined but
of any form. The objective of the training is thus to estimate the “best”
parameters w given a set of training data {xn,tn}n=1

N and fixed
functions ϕi(x).

Relevance vector machine for regression

“Relevance vector machine” (RVM) is a Bayesian framework for
learning in general models described here above. RVM actually relies
on a particular form of Eq. (1), similar to that used for “support
vector machine” (SVM) (Burges, 1998; Vapnik, 1998; Schölkopf
et al., 1999):

f ðx;wÞ = ∑
N

i=1
wiKðx;xiÞ + w0 = wtϕðxÞ ð2Þ

with ϕ(x)=[1, K(x,x1), K(x,x2),...,K(x,xn)]t and w=[w0, w1,..., wN]t.
Note that the constant termw0 is introduced in the vector of unknown
parametersw. The kernel function K(x,xi) so defines one basis function
per “data point” x in the training set. RVM regression employs model
(2) with an additive noise term to link the vectorial input xn and scalar
target variable tn

tn = f xn; wð Þ + �n ð3Þ

where �n is a zero-mean white noise process with variance σ2, i.e., p
(�n|σ2)=N (�n|0,σ2). Considering noise precision β instead of its
variance σ2, i.e., posing β=σ-2, and assuming the independence of
the samples tn, the likelihood of the complete training data set is

pðt jX;w;βÞ = ð2πβ−1Þ−N =2 exp −1
2
β j jt−Φw j j2

� �
ð4Þ

where t= [t1,...,tN]t, X={xn}n=1
N , and Φ=[ϕ(x1), ϕ(x2),...,ϕ(xn)]t is a

N×(N+1) design matrix. With more parameters (N+1) than
training data samples (N), direct maximum-likelihood estimation of
w would lead to over-fitting. In the RVM Bayesian framework, zero-
Please cite this article as: Phillips, C.L., et al., “Relevance vector ma
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mean Gaussian shrinkage priors are imposed on every wi and,
assuming the independence of the parameters, we have:

pðwi jαiÞ = Nðwi j0;α−1
i Þ⇒pðw jαÞ = ∏

N

i=0
Nðwi j0;α−1

i Þ ð5Þ

with α= [α0, α1,...,αN]t, a N+1 vector of hyper-parameters represent-
ing the precision on the parameters. Finally uniform hyper-priors are
assumed for all the precision hyper-parameters, α and β. An
interesting property of these hyper-priors is that when the evidence
of the model is maximized with respect to the hyper-parameters, a
few of them go to infinity which effectively constraints the
corresponding parameters to be zero. This is a type of “automatic
relevance determination” (MacKay, 1994; Neal, 1996) leading to a
sparse set of parameters w. Using Bayes rule and the properties of
Gaussian functions, the posterior distribution of the weight can also
be described by a Gaussian:

p w jX; t;α;βð Þ = N w jm; Σð Þ ð6Þ

where the mean m and covariance Σ are given by

m = βΣΦt t
Σ = ðA + βΦtΦÞ−1 ð7Þ

with A=diag(α0,...,αN) a diagonal matrix of precisions.
In practice, the values of α and β are estimated by maximizing the

marginal likelihood p(t|X,α,β), i.e., using a type-II maximum-likelihood
method (Berger, 1985). Only the most probable values are thus
calculated, an approximation to estimating and using their full
distribution. With this simplification, the marginal likelihood can be
obtained by integrating out the weight parameters

pðt jX;α;βÞ = ∫pðt jX;w;βÞpðw;αÞdw = Nðt j0;β−1I + ΦA−1ΦtÞ ð8Þ

Values of α and β that maximizes (the log of) (8) can then be
obtained iteratively, using the following update rules:

αnew
i =

1−αiΣii

m2
i

ðβnewÞ−1 =
j jt−Φm j j2

N−∑N
i = 1ð1−αiΣiiÞ

ð9Þ

where mi is the ith element of the estimated posterior weight w and
Σii the ith diagonal element of the posterior covariance matrix Σ from
Eq. (7).

Once the iterative procedure has converged to the “most probable”
values αMP and βMP, the distribution of target value t* for a new data
point x* is also Gaussian and estimated through

pðt
*
jX;t;αMP;βMPÞ = ∫pðt* jX;w;βMPÞpðw jX; t;αMP;βMPÞdw

= N ðt
*
jmtϕðx

*
Þ;σ�2Þ

ð10Þ

with the variance estimated as

σ�2 = β−1
MP + ϕðx

*
ÞtΣϕðx

*
Þ ð11Þ

where Σ is given by Eq. (7) with α and β set at their optimal value.
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Relevance vector machine for classification

RVM classification follows the same framework as described
in the previous section but with a modified likelihood function.
Two-class problems call for a binary target variable tn∈{0,1} and
we want to predict the posterior probability of belonging to one
of the two classes, given the input data xn. The linear Eq. (2) is
therefore generalized by applying a logistic sigmoid function
σ að Þ = 1

1 + expð−aÞ such that

f ðx;wÞ = σðwtϕðxÞÞ = 1
1 + expð−wtϕðxÞÞ ð12Þ

Note that there is no noise variance here. Then, using the Bernouilli
distribution, the likelihood of the training data set is defined as

pðt jX;wÞ = ∏
N

n=1
σðwtϕðxnÞÞtn ð1−σðwtϕðxnÞÞÞ1−tn ð13Þ

Unlike the regression case, it is now impossible to integrate out
theweight parametersw to directly obtain theweight posterior like in
Eq. (6) or the marginal likelihood (Eq. (8)). Using the Laplace
approximation, and for a fixed value of α, the mode of the posterior
distribution over w is obtained by maximizing:

log pðw jX; t;αÞ = log ðpðt jX;wÞpðw jαÞÞ− log pðt jX;αÞ

= ∑
N

n=1
ðtn log f ðxn;wÞ + ð1−tnÞ logð1−f ðxn;wÞÞÞ

−1
2
wtAw + const

ð14Þ

The mode and variance of the Laplace approximation for w are

wMP = ΣMPΦ
tBt

ΣMP = ðΦtBΦ + AÞ−1 ð15Þ

where B is an N×N diagonal matrix with bnn=f(xn;w)(1–f(xn;w)).
Using this Laplace approximation, the marginal likelihood is
expressed as

pðt jX;αÞ = ∫pðt jX;wÞpðw jαÞdw
= pðt jX;wMPÞpðwMP jαÞð2πÞM =2 jΣMP j1=2

ð16Þ

When maximizing Eq. (16) with respect to each αi, one eventually
obtains an update rule identical to Eq. (9).

Linear kernel and relevant features

When a linear kernel is used, K(x,xi) is simply the scalar product
between the 2 vectors, i.e., K(x,xi)=x·xi. Then Eq. (2) can be rewritten
as

f ðx;wÞ = ∑
N

i=1
wiKðx; xiÞ + w0 = x⋅ ∑

N

i=1
wixi

 !
+ w0 = x⋅r + w0

ð17Þ

The vector r=Σi=1
N wixi is thus a weighted mean of the training

data vectors and can be interpreted as the relevance of each feature:
First, the larger the absolute value of an element rk, the more
important it is to discriminate the classes. Second the sign of rk
indicates the direction of this feature's influence, i.e., towards the class
labelled 0 (rkb0) or 1 (rkN0).
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