Kinetics of interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and beta-lactam antibiotics. A choice of models
[en] The simplest model for the interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and beta-lactam antibiotics involves the three following steps: (a) the formation of a reversible equimolar enzyme - antibiotic complex; (b) the irreversible transformation of this complex into a modified enzyme - antibiotic complex; and (c) the breakdown of this latter complex and the concomitant release of a regenerated enzyme and a modified antibiotic molecule. The dissociation constant for step 1 and the rate constants for steps 2 and 3 were measured with various beta-lactam antibiotics. With antibiotic such as benzylpenicillin, which behaves as a good 'substrate', steps 1 and 2 occur at enzymic velocities, whereas step 3 occurs at a very low velocity and hence is responsible for the low efficiency of the overall process.
Frère, Jean-Marie ; Université de Liège - ULiège > Faculté de Médecine, Institut de Botanique > Service de Microbiologie
Ghuysen, Jean-Marie ; Université de Liège - ULiège > Faculté de Médecine, Institut de Botanique > Service de Microbiologie
Iwatsubo, Motohiro; Centre National de la Recherche Scientifique - CNRS > Centre de Génetique Moléculaire
Language :
English
Title :
Kinetics of interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and beta-lactam antibiotics. A choice of models
Publication date :
15 September 1975
Journal title :
European Journal of Biochemistry
ISSN :
0014-2956
eISSN :
1432-1033
Publisher :
Blackwell Science, Oxford, United Kingdom
Volume :
57
Issue :
2
Pages :
343-351
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRFC - Fonds de la Recherche Fondamentale Collective
Ghuysen J.M., Leyh‐Bouille M., Frére J.M., Dusart J., Marquet A., Perkins H.R., Nieto M. Ann. N.Y. Acad. Sci. 1974, 235:236-266.
Frère J.M., Ghuysen J.M., Perkins H.R., Nieto M. Biochem. J. 1973, 135:463-468.
Frère J.M., Leyh‐Bouille M., Ghuysen J.M., Perkins H.R. Eur. J. Biochem. 1974, 50:203-234.
Nieto M., Perkins H.R., Frère J.M., Ghuysen J.M. Biochem. J. 1973, 135:493-505.
Laidler K.J. (1955) THEORY OF THE TRANSIENT PHASE IN KINETICS, WITH SPECIAL REFERENCE TO ENZYME SYSTEMS. Canadian Journal of Chemistry 33:1614-1624.
Ouellet L., Laidler K.J. (1956) THEORY OF THE TRANSIENT PHASE IN KINETICS, WITH SPECIAL REFERENCE TO ENZYME SYSTEMS: II. THE CASE OF TWO ENZYME–SUBSTRATE COMPLEXES. Canadian Journal of Chemistry 34:146-150.
Darvey I.G. J. Theor. Biol. 1968, 19:215-231.
Hijazi N.H., Laidler K.J. Can. J. Biochem. 1973, 51:822-831.
Hijazi N.H., Laidler K.J. Can. J. Biochem. 1973, 51:832-840.
Kitz R., Wilson I.B. J. Biol. Chem. 1962, 237:3245-3249.
Mares‐Guia M., Shaw E. (1967) The specific inactivation of trypsin by ethyl p-guanidinobenzoate. J Biol Chem 242:5782-5788.
Halford S.E., Bennett N.B., Trentham D.R., Gutfreund H. Biochem. J. 1969, 114:243-251.
di Franco A., Iwatsubo M. Eur. J. Biochem. 1972, 30:517-532.
Meites L., Meites L. Talanta 1972, 19:1131-1139.
Umbreit J.M., Strominger J.L. J. Biol. Chem. 1973, 248:6767-6771.