[en] Although STAT5 promotes survival of hematopoietic progenitors, STAT5-/- mice develop mild neutrophilia. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that in STAT5-/- mice, liver endothelial cells (LECs) autonomously secrete high amounts of G-CSF, allowing myeloid progenitors to overcompensate for their intrinsic survival defect. However, when injected with pro-inflammatory cytokines, mutant mice cannot further increase neutrophil production, display a severe deficiency in peripheral neutrophil survival, and are therefore unable to maintain neutrophil homeostasis. In wild-type mice, inflammatory stimulation induces rapid STAT5 degradation in LECs, G-CSF production by LECs and other cell types, and then sustained mobilization and expansion of long-lived neutrophils. CONCLUSION: We conclude that STAT5 is an ambivalent factor. In cells of the granulocytic lineage, it exerts an antiapoptotic function that is required for maintenance of neutrophil homeostasis, especially during the inflammatory response. In LECs, STAT5 negatively regulates granulopoiesis by directly or indirectly repressing G-CSF expression. Removal of this STAT5-imposed brake contributes to induction of emergency granulopoiesis.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Fievez, Laurence ; Université de Liège - ULiège > Département de sciences fonctionnelles > Biochimie et biologie moléculaire
Desmet, Christophe ; Université de Liège - ULiège > Biochimie et biologie moléculaire
Henry, Emmanuelle; Université Libre de Bruxelles - ULB > Laboratory of Animal Physiology, Institute of Molecular Biology and Medicine
Pajak, Bernard; Université Libre de Bruxelles - ULB > Laboratory of Animal Physiology, Institute of Molecular Biology and Medicine
Hegenbarth, Silke; University of Bonn (Germany) > Institute for Molecular Medicine and Experimental Immunology
Garze, Virginie; Université Libre de Bruxelles - ULB > Laboratory of Animal Physiology, Institute of Molecular Biology and Medicine
Bex, Françoise; Université Libre de Bruxelles - ULB > Laboratory of Microbiology, Institute for Microbiological Research J-M Wiame
Jaspar, Fabrice ; Université de Liège - ULiège > Clinique des grands animaux
Boutet, Philippe
Gillet, Laurent ; Université de Liège - ULiège > Immunologie et vaccinologie
Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20: 825-852.
Dibbert B, Weber M, Nikolaizik WH, Vogt P, Schoni MH, et al. (1999) Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci U S A 96: 13330-13335.
Basu S, Hodgson G, Zhang HH, Katz M, Quilici C, et al. (2000) "Emergency" granulopoiesis in G-CSF-deficient mice in response to Candida albicans infection. Blood 95: 3725-3733.
Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, et al. (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21: 759-806.
Ulich TR, del Castillo J, McNiece IK, Yi ES, Alzona CP, et al. (1991) Stem cell factor in combination with granulocyte colony-stimulating factor (CSF) or granulocyte-macrophage CSF synergistically increases granulopoiesis in vivo. Blood 78: 1954-1962.
Chatta GS, Price TH, Allen RC, Dale DC (1994) Effects of in vivo recombinant methionyl human granulocyte colony-stimulating factor on the neutrophil response and peripheral blood colony-forming cells in healthy young and elderly adult volunteers. Blood 84: 2923-2929.
Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, et al. (1994) Mice lacking granulocyte colony-stimulating factor have chronic. neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84: 1737-1746.
Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5: 491-501.
Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, et al. (1986) Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232: 61-65.
Lord BI, Bronchud MH, Owens S, Chang J, Howell A, et al. (1989) The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci U S A 86: 9499-9503.
Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17: 413-423.
Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28: 509-554.
Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80: 2012-2020.
Tian SS, Lamb P, Seidel HM, Stein RB, Rosen J (1994) Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 84: 1760-1764.
de Koning JP, Dong F, Smith L, Schelen AM, Barge RM, et al. (1996) The membrane-distal cytoplasmic region of human granulocyte colony-stimulating factor is required for STAT3 but not STAT1 homodimer formation. Blood 87: 1335-1342.
Tian SS, Tapley P, Sincich C, Stein RB, Rosen J, et al. (1996) Multiple signaling pathways induced by granulocyte colony-stimulating factor involving activation of JAKs, STAT5, and/or STAT3 are required for regulation of three distinct classes of immediate early genes. Blood 88: 4435-4444.
Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84: 443-450.
Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, et al. (2002) STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent, differentiation. Immunity 17: 63-72.
Croker BA, Metcalf D, Robb L, Wei W, Mifsud S, et al. (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20: 153-165.
Teglund S, McKay C, Schuetz, E, van Deursen JM, Stravopodis D, et al. (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93: 841-850.
Ilaria RL Jr, Hawley RG, Van Etten RA (1999) Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood 93: 4154-4166.
Kieslinger M, Woldman I, Moriggl R, Hofmann J, Marine JC, et al. (2000) Antiapoptotic activity of Stat5 required during terminal stages of myeloid, differentiation. Genes Dev 14: 232-244.
Snow JW, Abraham N, Ma MC, Abbey NW, Herndier B, et al. (2002) STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells. Blood 99: 95-101.
Bunting KD, Bradley HL, Hawley TS, Moriggl R, Sorrentino BP, et al. (2002) Reduced lymphomyeloid repopulating activity from adult bone marrow and fetal liver of mice lacking expression of STAT5. Blood 99: 479-487.
Al-Shami A, Mahanna W, Naccache PH (1998) Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Selective activation of Jak2, Stat3, and Stat5b. J Biol Chem 273: 1058-1063.
Goh EL, Zhu T, Leong WY, Iobie PE (2002) c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription. Endocrinology 143: 3590-3603.
Orkin SH (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1: 57-64.
Simon HU (2003) Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev 193: 101-110.
Coxon A, Tang T, Mayadas TN (1999) Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte/ macrophage colony-stimulating factor. J Exp Med 190: 923-934.
Darnell JE Jr (1997) STATs and gene regulation. Science 277: 1630-1635.
Stocklin E, Wissler M, Gouilleux F, Groner B (1996) Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383: 726-728.
Luo G, Yu-Lee L (2000) Stat5b inhibits NFkappaB-mediated signalling. Mol Endocrinol 14: 114-123.
Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, et al. (2006) Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci U S A 103: 1000-1005.
Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 178: 89-97.
Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193-197.
Pajak B, De Smedt T, Moulin V, De Trez C, Maldonado-Lopez R, et al. (2000) Immunohistowax processing, a new fixation and embedding method for light microscopy, which preserves antigen immunoreactivity and morphological structures: visualisation of dendritic cells in peripheral organs. J Clin Pathol 53: 518-524.
Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, et al. (1999) Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116: 1428-1440.
Bureau F, Vanderplasschen A, Jaspar F, Minner F, Pastoret PP, et al. (2002) Constitutive nuclear factor-kappaB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes by controlling the expression of distinct Bcl-2 family proteins. Blood 99: 3683-3691.