Bacillus/enzymology; Bacterial Proteins/chemistry/genetics; Chitin/metabolism; Enzyme Stability; Hexosaminidases/chemistry; Models, Molecular; Protein Denaturation; Protein Structure, Tertiary; Recombinant Fusion Proteins/chemistry; beta-Lactamases/chemistry/genetics
Abstract :
[en] Using genetic engineering technologies, the chitin-binding domain (ChBD) of the human macrophage chitotriosidase has been inserted into the host protein BlaP, a class A beta-lactamase produced by Bacillus licheniformis. The product of this construction behaved as a soluble chimeric protein that conserves both the capacity to bind chitin and to hydrolyze beta-lactam moiety. Here we describe the biochemical and biophysical properties of this protein (BlaPChBD). This work contributes to a better understanding of the reciprocal structural and functional effects of the insertion on the host protein scaffold and the heterologous structured protein fragments. The use of BlaP as a protein carrier represents an efficient approach to the functional study of heterologous protein fragments.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Vandevenne, Marylène ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Filée, Patrice ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Scarafone, Natacha ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines
Cloes, Benoit
Gaspard, Gilles
Yilmaz, Nursel
Dumoulin, Mireille ; Université de Liège - ULiège > Département des sciences de la vie > Enzymologie et repliement des protéines
François, Jean-Marie ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Frère, Jean-Marie ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Language :
English
Title :
The Bacillus licheniformis BlaP beta-lactamase as a model protein scaffold to study the insertion of protein fragments.
Publication date :
2007
Journal title :
Protein Science: A Publication of the Protein Society
ISSN :
0961-8368
eISSN :
1469-896X
Publisher :
Cold Spring Harbor Laboratory Press, Woodbury, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abedi, M.R., Caponigro, G., and Kamb, A. 1998. Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res. 26: 623-630.
Betton, J.M., Jacob, J.P., Hofnung, M., and Broome-Smith, J.K. 1997. Creating a bifunctional protein by insertion of β-lactamase into the maltodextrin-binding protein. Nat. Biotechnol. 15: 1276-1279.
Collinet, B., Herve, M., Pecorari, F., Minard, P., Eder, O., and Desmadril, M. 2000. Functionally accepted insertions of proteins within protein domains. J. Biol. Chem. 275: 17428-17433.
Delarue, M., Poch, O., Tordo, N., Moras, D., and Argos, P. 1990. An attempt to unify the structure of polymerases. Protein Eng. 3: 461-467.
Feller, G., d'Amico, D., and Gerday, C. 1999. Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry 38: 4613-4619.
Frate, M.C., Lietz, E.J., Santos, J., Rossi, J.P., Fink, A.L., and Ermacora, M.R. 2000. Export and folding of signal-sequenceless Bacillus licheniformis β-lactamase in Escherichia coli. Eur. J. Biochem. 267: 3836-3847.
Freimuth, P.I., Taylor, J.W., and Kaiser, E.T. 1990. Introduction of guest peptides into Escherichia coli alkaline phosphatase. Excision and purification of a dynorphin analogue from an active chimeric protein. J. Biol. Chem. 265: 896-901.
Gilkes, N.R., Jervis, E., Henrissat, B., Tekant, B., Miller Jr., R.C., Warren, R.A., and Kilburn, D.G. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J. Biol. Chem. 267: 6743-6749.
Hallet, B., Sherratt, D.J., and Hayes, F. 1997. Pentapeptide scanning mutagenesis: Random insertion of a variable five amino acid cassette in a target protein. Nucleic Acids Res. 25: 1866-1867.
Han, K.K., Tetaert, D., Debuire, B., Dautrevaux, M., and Biserte, G. 1977. Sequential Edman degredation. Biochimie 59: 557-576.
Hashimoto, M., Ikegami, T., Seino, S., Ohuchi, N., Fukada, H., Sugiyama, J., Shirakawa, M., and Watanabe, T. 2000. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J. Bacteriol. 182: 3045-3054.
Hirabayashi, J. and Kasai, K. 1991. Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa β-galactoside-binding lectin. J. Biol. Chem. 266: 23648-23653.
Jones, S., Stewart, M., Michie, A., Swindells, M.B., Orengo, C., and Thornton, J.M. 1998. Domain assignment for protein structures using a consensus approach: Characterization and analysis. Protein Sci. 7: 233-242.
Ladant, D., Glaser, P., and Ullmann, A. 1992. Insertional mutagenesis of Bordetella pertussis adenylate cyclase. J. Biol. Chem. 267: 2244-2250.
Lee, C. and Levitt, M. 1991. Accurate prediction of the stability and activity effects of site-directed mutagenesis on a protein core. Nature 352: 448-451.
Levine, M., Muirhead, H., Stammers, D.K., and Stuart, D.I. 1978. Structure of pyruvate kinase and similarities with other enzymes: Possible implications for protein taxonomy and evolution. Nature 271: 626-630.
Lewis, J.K., Bendahmane, M., Smith, T.J., Beachy, R.N., and Siuzdak, G. 1998. Identification of viral mutants by mass spectrometry. Proc. Natl. Acad. Sci. 95: 8596-8601.
Martin, J.L., Bardwell, J.C., and Kuriyan, J. 1993. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365: 464-468.
Matagne, A., Misselyn-Bauduin, A.M., Joris, B., Erpicum, T., Granier, B., and Frere, J.M. 1990. The diversity of the catalytic properties of class A β-lactamases. Biochem. J. 265: 131-146.
Matagne, A., Joris, B., Van Beeumen, J., and Frere, J.M. 1991. Ragged N-termini and other variants of class A β-lactamases analysed by chromato-focusing. Biochem. J. 273: 503-510.
Mathonet, P., Deherve, J., Soumillion, P., and Fastrez, J. 2006. Active TEM-1 β-lactamase mutants with random peptides inserted in three contiguous surface loops. Protein Sci. 15: 2323-2334.
Moews, P.C., Knox, J.R., Dideberg, O., Charlier, P., and Frere, J.M. 1990. β-Lactamase of Bacillus licheniformis 749/C at 2 Å resolution. Proteins 7: 156-171.
Pace, C.N. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131: 266-280.
Palzkill, T. and Botstein, D. 1992. Probing β-lactamase structure and function using random replacement mutagenesis. Proteins 14: 29-44.
Prodromou, C. and Pearl, L.H. 1992. Recursive PCR: A novel technique for total gene synthesis. Protein Eng. 5: 827-829.
Rouse, D.A., DeVito, J.A., Li, Z., Byer, H., and Morris, S.L. 1996. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: Effects on catalase-peroxidase activities and isoniazid resistance. Mol. Microbiol. 22: 583-592.
Selwyn, M.J. 1965. A simple test for inactivation of an enzyme during assay. Biochim. Biophys. Acta 105: 193-195.
Sideraki, V., Huang, W., Palzkill, T., and Gilbert, H.F. 2001. A secondary drug resistance mutation of TEM-1 β-lactamase that suppresses misfolding and aggregation. Proc. Natl. Acad. Sci. 98: 283-288.
Tepper, A.D., Dammann, H., Bominaar, A.A., and Veron, M. 1994. Investigation of the active site and the conformational stability of nucleoside diphosphate kinase by site-directed mutagenesis. J. Biol. Chem. 269: 32175-32180.
Tjoelker, L.W., Gosting, L., Frey, S., Hunter, C.L., Trong, H.L., Steiner, B., Brammer, H., and Gray, P.W. 2000. Structural and functional definition of the human chitinase chitin-binding domain. J. Biol. Chem. 275: 514-520.
Tomme, P., Creagh, A.L., Kilburn, D.G., and Haynes, C.A. 1996. Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry 35: 13885-13894.
Tsybovsky, Y.I., Shubenok, D.V., Stremovskiy, O.A., Deyev, S.M., and Martsev, S.P. 2004. Folding and stability of chimeric immunofusion VL-barstar. Biochemistry (Mosc.) 69: 939-948.
Ujita, M., Sakai, K., Hamazaki, K., Yoneda, M., Isomura, S., and Hara, A. 2003. Carbohydrate binding specificity of the recombinant chitin-binding domain of human macrophage chitinase. Biosci. Biotechnol. Biochem. 67: 2402-2407.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.